matlab 代码

function PlotRec(mPoint1,mPoint2,mText)
%  此函数画出小矩形
%  输入: 
%  mPoint1    输入点1,较小,横坐标
%  mPoint2    输入点2,较大,横坐标
%  mText      输入的文本,序号,纵坐标
vPoint = zeros(4,2) ;
vPoint(1,:) = [mPoint1,mText-1];
vPoint(2,:) = [mPoint2,mText-1];
vPoint(3,:) = [mPoint1,mText];
vPoint(4,:) = [mPoint2,mText];
plot([vPoint(1,1),vPoint(2,1)],[vPoint(1,2),vPoint(2,2)]);
hold on ;
plot([vPoint(1,1),vPoint(3,1)],[vPoint(1,2),vPoint(3,2)]);
plot([vPoint(2,1),vPoint(4,1)],[vPoint(2,2),vPoint(4,2)]);
plot([vPoint(3,1),vPoint(4,1)],[vPoint(3,2),vPoint(4,2)]);
function [Zp,Y1p,Y2p,Y3p]=COST(X,T,P,plotif)
%  JSPGA的内联子函数,用于求调度方案的Makespan值
%  输入参数列表
%  X       调度方案的编码矩阵,是一个实数编码的m×n矩阵
%  T       m×n的矩阵,存储m个工件n个工序的加工时间
%  P       1×n的向量,n个工序中,每一个工序所具有的机床数目
%  plotif  是否绘甘特图的控制参数
%  输出参数列表
%  Zp      最优的Makespan值
%  Y1p     最优方案中,各工件各工序的开始时刻
%  Y2p     最优方案中,各工件各工序的结束时刻
%  Y3p     最优方案中,各工件各工序使用的机器编号

%第一步:变量初始化
[m,n]=size(X);
Y1p=zeros(m,n);
Y2p=zeros(m,n);
Y3p=zeros(m,n);

%第二步:计算第一道工序的安排
Q1=zeros(m,1);
Q2=zeros(m,1);
R=X(:,1);%取出第一道工序
Q3=floor(R);%向下取整即得到各工件在第一道工序使用的机器的编号
%下面计算各工件第一道工序的开始时刻和结束时刻
for i=1:P(1)%取出机器编号
    pos=find(Q3==i);%取出使用编号为i的机器为其加工的工件的编号
    lenpos=length(pos);
    if lenpos>=1
        Q1(pos(1))=0;
        if lenpos>=2
            for j=2:lenpos
                Q1(pos(j))=Q2(pos(j-1));
                Q2(pos(j))=Q2(pos(j-1))+T(pos(j),1);
            end
        end
    end
end
Y1p(:,1)=Q1;
Y2p(:,1)=Q2;
Y3p(:,1)=Q3;

%第三步:计算剩余工序的安排
for k=2:n
    R=X(:,k);%取出第k道工序
    Q3=floor(R);%向下取整即得到各工件在第k道工序使用的机器的编号
    %下面计算各工件第k道工序的开始时刻和结束时刻
    for i=1:P(k)%取出机器编号
        pos=find(Q3==i);%取出使用编号为i的机器为其加工的工件的编号
        lenpos=length(pos);
        if lenpos>=1
            EndTime=Y2p(pos,k-1);%取出这些机器在上一个工序中的结束时刻
            POS=zeros(1,lenpos);%上一个工序完成时间由早到晚的排序
            for jj=1:lenpos
                MinEndTime=min(EndTime);
                ppp=find(EndTime==MinEndTime);
                POS(jj)=ppp(1);
                EndTime(ppp(1))=Inf;
            end            
            %根据上一个工序完成时刻的早晚,计算各工件第k道工序的开始时刻和结束时刻
            Q1(pos(POS(1)))=Y2p(pos(POS(1)),k-1);
            Q2(pos(POS(1)))=Q1(pos(POS(1)))+T(pos(POS(1)),k);%前一个工件的结束时刻
            if lenpos>=2
                for j=2:lenpos
                    Q1(pos(POS(j)))=Y2p(pos(POS(j)),k-1);%预定的开始时刻为上一个工序的结束时刻
                    if Q1(pos(POS(j)))<Q2(pos(POS(j-1)))%如果比前面的工件的结束时刻还早
                        Q1(pos(POS(j)))=Q2(pos(POS(j-1)));
                    end
                end
            end
        end
    end
    Y1p(:,k)=Q1;
    Y2p(:,k)=Q2;
    Y3p(:,k)=Q3;
end
%第四步:计算最优的Makespan值
Y2m=Y2p(:,n);
Zp=max(Y2m);
%第五步:绘甘特图
if plotif
    for i=1:m
        for j=1:n
            mPoint1=Y1p(i,j);
            mPoint2=Y2p(i,j);
            mText=m+1-i;
            PlotRec(mPoint1,mPoint2,mText);
            Word=num2str(Y3p(i,j));
            %text(0.5*mPoint1+0.5*mPoint2,mText-0.5,Word);
            hold on
            x1=mPoint1;y1=mText-1;
            x2=mPoint2;y2=mText-1;
            x3=mPoint2;y3=mText;
            x4=mPoint1;y4=mText;
            %fill([x1,x2,x3,x4],[y1,y2,y3,y4],'r');
            fill([x1,x2,x3,x4],[y1,y2,y3,y4],[1,0.5,1]);
            text(0.5*mPoint1+0.5*mPoint2,mText-0.5,Word);
        end
    end
end
%车间作业调度问题遗传算法通用MATLAB源程序
%
%--------------------------------------------------------------------------
% JSPGA.m
% 车间作业调度问题遗传算法
%--------------------------------------------------------------------------
% 输入参数列表
% M 遗传进化迭代次数
% N 种群规模(取偶数)
% Pm 变异概率
% T m×n的矩阵,存储m个工件n个工序的加工时间
% P 1×n的向量,n个工序中,每一个工序所具有的机床数目
% 输出参数列表
% Zp 最优的Makespan值
% Y1p 最优方案中,各工件各工序的开始时刻,可根据它绘出甘特图
% Y2p 最优方案中,各工件各工序的结束时刻,可根据它绘出甘特图
% Y3p 最优方案中,各工件各工序使用的机器编号
% Xp 最优决策变量的值,决策变量是一个实数编码的m×n矩阵
% LC1 收敛曲线1,各代最优个体适应值的记录
% LC2 收敛曲线2,各代群体平均适应值的记录
% 最后,程序还将绘出三副图片:两条收敛曲线图和甘特图(各工件的调度时序图)
clear all
M=100;
N=20;
Pm=0.05;
Time1=[1,3,6,7,3,6];
Time2=[8,5,10,10,10,4];
Time3=[5,4,8,9,1,7];
Time4=[5,5,5,3,8,9];
Time5=[9,3,5,4,3,1];
Time6=[3,3,9,10,4,1];
T=[Time1;Time2;Time3;Time4;Time5;Time6];
P=[6 6 6 6 6 6 6];
%第一步:变量初始化
[m,n]=size(T);%m是总工件数,n是总工序数
Xp=zeros(m,n);%最优决策变量
LC1=zeros(1,M);%收敛曲线1
LC2=zeros(1,N);%收敛曲线2

%第二步:随机产生初始种群
farm=cell(1,N);%采用细胞结构存储种群
for k=1:N
    X=zeros(m,n);
    for j=1:n
        for i=1:m
            X(i,j)=1+(P(j)-eps)*rand;
        end
    end
    farm{k}=X;
end

counter=0;%设置迭代计数器
while counter<M%停止条件为达到最大迭代次数
    
    %第三步:交叉
    newfarm=cell(1,N);%交叉产生的新种群存在其中
    Ser=randperm(N);
    for i=1:2:(N-1)
        A=farm{Ser(i)};%父代个体
        B=farm{Ser(i+1)};%父代个体
        Manner=unidrnd(2);%随机选择交叉方式
        if Manner==1
            cp=unidrnd(m-1);%随机选择交叉点
            %双亲双子单点交叉
            a=[A(1:cp,:);B((cp+1):m,:)];%子代个体
            b=[B(1:cp,:);A((cp+1):m,:)];
        else
            cp=unidrnd(n-1);%随机选择交叉点
            a=[A(1:cp,:);B((cp+1):m,:)];%子代个体
            b=[B(:,1:cp),A(:,(cp+1):n)];
        end
        newfarm{i}=a;%交叉后的子代存入newfarm
        newfarm{i+1}=b;
    end
    %新旧种群合并
    FARM=[farm,newfarm];
    
    %第四步:选择复制
    FITNESS=zeros(1,2*N);
    fitness=zeros(1,N);
    plotif=0;
    for i=1:(2*N)
        X=FARM{i};
        Z=COST(X,T,P,plotif);%调用计算费用的子函数
        FITNESS(i)=Z;
    end
    %选择复制采取两两随机配对竞争的方式,具有保留最优个体的能力
    Ser=randperm(2*N);
    for i=1:N
        f1=FITNESS(Ser(2*i-1));
        f2=FITNESS(Ser(2*i));
        if f1<=f2
            farm{i}=FARM{Ser(2*i-1)};
            fitness(i)=FITNESS(Ser(2*i-1));
        else
            farm{i}=FARM{Ser(2*i)};
        end
    end
    %记录最佳个体和收敛曲线
    minfitness=min(fitness)
    meanfitness=mean(fitness)
    LC1(counter+1)=minfitness;%收敛曲线1,各代最优个体适应值的记录
    LC2(counter+1)=meanfitness;%收敛曲线2,各代群体平均适应值的记录
    pos=find(fitness==minfitness);
    Xp=farm{pos(1)};
    
    %第五步:变异
    for i=1:N
        if Pm>rand;%变异概率为Pm
            X=farm{i};
            I=unidrnd(m);
            J=unidrnd(n);
            X(I,J)=1+(P(J)-eps)*rand;
            farm{i}=X;
        end
    end
    farm{pos(1)}=Xp;
    
    counter=counter+1
end

%输出结果并绘图
figure(1);
plotif=1;
X=Xp;
[Zp,Y1p,Y2p,Y3p]=COST(X,T,P,plotif);
figure(2);
plot(LC1);
figure(3);
plot(LC2);
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,530评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,403评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,120评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,770评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,758评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,649评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,021评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,675评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,931评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,751评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,410评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,004评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,969评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,042评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,493评论 2 343

推荐阅读更多精彩内容