HashMap原理

HashMap原理

HashMap实际上是一个“链表散列”的数据结构,即数组和链表的结合体。

数组:存储区间连续,占用内存严重,寻址容易,插入删除困难;

链表:存储区间离散,占用内存比较宽松,寻址困难,插入删除容易;

Hashmap综合应用了这两种数据结构,实现了寻址容易,插入删除也容易。

image.png

HashMap的基本存储原理以及存储内容的组成

基本原理:先声明一个下标范围比较大的数组来存储元素,数组存储的元素是一个Entry类,这个类有三个数据域,key、value(键值对),next(指向下一个Entry)。

例如, 第一个键值对A进来。通过计算其key的hash得到的index=0。记做:Entry[0] = A。

第二个键值对B,通过计算其index也等于0, HashMap会将B.next =A,Entry[0] =B,

第三个键值对 C,index也等于0,那么C.next = B,Entry[0] = C;

这样我们发现index=0的地方事实上存取了A,B,C三个键值对,它们通过next这个属性链接在一起。我们可以将这个地方称为桶。

对于不同的元素,可能计算出了相同的函数值,这样就产生了“冲突”,这就需要解决冲突,“直接定址”与“解决冲突”是哈希表的两大特点。

HashMap是基于散列法(又称哈希法hashing)的原理,使用put(key, value)存储对象到HashMap中,使用get(key)从HashMap中获取对象。当我们给put()方法传递键和值时,我们先对键调用hashCode()方法,返回的hashCode用于找到bucket(桶)位置来储存Entry对象。

HashMap具体的存取过程如下:

put键值对的方法的过程是:
  1. 获取key ;
  2. 通过hash函数得到hash值;
    int hash=key.hashCode(); //获取key的hashCode,这个值是一个固定的int值
  3. 得到桶号(一般都为hash值对桶数求模) ,也即数组下标int index=hash%Entry[].length。//获取数组下标:key的hash值对Entry数组长度进行取余
  4. 存放key和value在桶内。
    table[index]=Entry对象;
get值方法的过程是:
  1. 获取key
  2. 通过hash函数得到hash值
    int hash=key.hashCode();
  3. 得到桶号(一般都为hash值对桶数求模)
    int index =hash%Entry[].length;
  4. 比较桶的内部元素是否与key相等,若都不相等,则没有找到。
  5. 取出相等的记录的value。


HashMap中直接地址用hash函数生成;解决冲突,用比较函数遍历桶内数据解决。如果每个桶内部只有一个元素,那么查找的时候只有一次比较。

如何重新调整HashMap的大小

“如果HashMap的大小超过了负载因子(load factor)定义的容量,怎么办?”
默认的负载因子大小为0.75,也就是说,当一个map填满了75%的bucket时候,和其它集合类(如ArrayList等)一样,将会创建原来HashMap大小的两倍的bucket数组,来重新调整map的大小,并将原来的对象放入新的bucket数组中。这个过程叫作rehashing,因为它调用hash方法找到新的bucket位置。

不可变对象作为key的好处

作为键的原因是 String, Interger这样的类作为HashMap的键是很合适的,而且String最为常用。因为String是不可变的,也是final的,而且已经重写了equals()和hashCode()方法了。因为为了要计算hashCode(),就要防止键值改变,如果键值在放入时和获取时返回不同的hashcode的话,那么就不能从HashMap中找到你想要的对象。

HashMap多线程的条件竞争(死锁,在hashmap大小重新调整时有概率发生)

在并发环境下,当申请完了新的内存空间后,我们要把原来的内存空间中的数据转移到新内存空间中去。可能会形成环状链表,导致get操作时,cpu空转。

ConcurrentHashMap实现原理及源码分析

ConcurrentHashMap实现原理

我们知道HashTable是synchronized的,但是ConcurrentHashMap同步性能更好,ConcurrentHashMap可以代替HashTable。
HashTable : HashTable和HashMap的实现原理几乎一样,差别无非是:
1.HashTable不允许key和value为null;
2.HashTable是线程安全的。
但是HashTable线程安全的策略实现代价却太大了get/put所有相关操作都是synchronized的,这相当于给整个哈希表加了一把大锁,多线程访问时候,只要有一个线程访问或操作该对象,那其他线程只能阻塞,性能会非常差。

image.png

HashTable性能差主要是由于所有操作需要竞争同一把锁,而如果容器中有多把锁,每一把锁锁一段数据,这样在多线程访问时不同段的数据时,就不会存在锁竞争了,这样便可以有效地提高并发效率。这就是ConcurrentHashMap所采用的"==分段锁=="思想。

image.png

ConcurrentHashMap源码分析

ConcurrentHashMap采用了非常精妙的"分段锁"策略,ConcurrentHashMap的主体是个Segment数组。

final Segment<K,V>[] segments;

Segment继承了ReentrantLock,所以它就是一种可重入锁(ReentrantLock)。在ConcurrentHashMap,一个Segment就是一个子哈希表,Segment里维护了一个HashEntry数组,并发环境下,对于不同Segment的数据进行操作是不用考虑锁竞争的。所以,对于同一个Segment的操作才需考虑线程同步,不同的Segment则无需考虑。

Segment类似于HashMap,一个Segment维护着一个HashEntry数组

transient volatile HashEntry<K,V>[] table;

HashEntry是目前我们提到的最小的逻辑处理单元了。一个ConcurrentHashMap维护一个Segment数组,一个Segment维护一个HashEntry数组。

static final class HashEntry<K,V> {
        final int hash;
        final K key;
        volatile V value;
        volatile HashEntry<K,V> next;
        //其他省略
}

我们说Segment类似哈希表,那么一些属性就跟我们之前提到的HashMap差不离,比如负载因子loadFactor,比如阈值threshold等等,看下Segment的构造方法

Segment(float lf, int threshold, HashEntry<K,V>[] tab) {
            this.loadFactor = lf;//负载因子
            this.threshold = threshold;//阈值
            this.table = tab;//主干数组即HashEntry数组
        }

我们来看下ConcurrentHashMap的构造方法

public ConcurrentHashMap(int initialCapacity,
                               float loadFactor, int concurrencyLevel) {
          if (!(loadFactor > 0) || initialCapacity < 0 || concurrencyLevel <= 0)
              throw new IllegalArgumentException();
          //MAX_SEGMENTS 为1<<16=65536,也就是最大并发数为65536
          if (concurrencyLevel > MAX_SEGMENTS)
              concurrencyLevel = MAX_SEGMENTS;
          //2的sshif次方等于ssize,例:ssize=16,sshift=4;ssize=32,sshif=5
         int sshift = 0;
         //ssize 为segments数组长度,根据concurrentLevel计算得出
         int ssize = 1;
         while (ssize < concurrencyLevel) {
             ++sshift;
             ssize <<= 1;
         }
         //segmentShift和segmentMask这两个变量在定位segment时会用到
         this.segmentShift = 32 - sshift;
         this.segmentMask = ssize - 1;
         if (initialCapacity > MAXIMUM_CAPACITY)
             initialCapacity = MAXIMUM_CAPACITY;
         //计算cap的大小,即Segment中HashEntry的数组长度,cap也一定为2的n次方.
         int c = initialCapacity / ssize;
         if (c * ssize < initialCapacity)
             ++c;
         int cap = MIN_SEGMENT_TABLE_CAPACITY;
         while (cap < c)
             cap <<= 1;
         //创建segments数组并初始化第一个Segment,其余的Segment延迟初始化
         Segment<K,V> s0 =
             new Segment<K,V>(loadFactor, (int)(cap * loadFactor),
                              (HashEntry<K,V>[])new HashEntry[cap]);
         Segment<K,V>[] ss = (Segment<K,V>[])new Segment[ssize];
         UNSAFE.putOrderedObject(ss, SBASE, s0); 
         this.segments = ss;
     }

ConcurrentHashMap
的get方法无需加锁,由于其中涉及到的共享变量都使用volatile修饰(一个线程修改变量值后,另外一个线程立即可见),volatile可以保证内存可见性,所以不会读取到过期数据。concurrentHashMap的put方法没有加锁,该put调用到Segment上的put方法时才加上锁,Segment中的put方法是加锁的。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,922评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,591评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,546评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,467评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,553评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,580评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,588评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,334评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,780评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,092评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,270评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,925评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,573评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,194评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,437评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,154评论 2 366
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,127评论 2 352