原文链接:https://ci.apache.org/projects/flink/flink-docs-release-1.3/dev/scala_api_extensions.html
为了保持Scala API和Java API之间相当的一致性,Scala 的一些高阶表达式被从标准的API中剔除,包括批处理的和流处理的。
如果你想享受完整的Scala体验,你可以选择通过隐式转换来添加扩展提升Scala的API。
为了使用所有的扩展,你仅需要导入如下的包,在DataSet API中:
import org.apache.flink.api.scala.extensions._
或者在DataStream API中:
import org.apache.flink.streaming.api.scala.extensions._
或者你可以根据你自己的需要导入单独的扩展。
接受部分函数(Accept partial functions)
通常,DataSet API和DataStream API都不支持通过匿名模式匹配来构建tuple、case class和集合,如下:
val data: DataSet[(Int, String, Double)] = // [...]
data.map {
case (id, name, temperature) => // [...]
// The previous line causes the following compilation error:
// "The argument types of an anonymous function must be fully known. (SLS 8.5)"
}
这个扩展为DataSet API和DataStream API引入了新的方法,这些方法与扩展API有着一一对应的关系,这些委派方法支持匿名模式匹配功能:
DataSet API
方法 原形 案例
mapWith map (DataSet) data.mapWith {
case (_, value) => value.toString
}
mapPartitionWith mapPartition (DataSet) data.mapPartitionWith {
case head #:: _ => head
}
flatMapWith flatMap (DataSet) data.flatMapWith {
case (_, name, visitTimes) => visitTimes.map(name -> _)
}
filterWith filter (DataSet) data.filterWith {
case Train(_, isOnTime) => isOnTime
}
reduceWith reduce (DataSet, GroupedDataSet) data.reduceWith {
case ((_, amount1), (_, amount2)) => amount1 + amount2
}
reduceGroupWith reduceGroup (GroupedDataSet) data.reduceGroupWith {
case id #:: value #:: _ => id -> value
}
groupingBy groupBy (DataSet) data.groupingBy {
case (id, _, _) => id
}
sortGroupWith sortGroup (GroupedDataSet) grouped.sortGroupWith(Order.ASCENDING) {
case House(_, value) => value
}
combineGroupWith combineGroup (GroupedDataSet) grouped.combineGroupWith {
case header #:: amounts => amounts.sum
}
projecting apply (JoinDataSet, CrossDataSet) data1.join(data2).
whereClause(case (pk, _) => pk).
isEqualTo(case (_, fk) => fk).
projecting {
case ((pk, tx), (products, fk)) => tx -> products
}
data1.cross(data2).projecting {
case ((a, _), (_, b) => a -> b
}
projecting apply (CoGroupDataSet) data1.coGroup(data2).
whereClause(case (pk, _) => pk).
isEqualTo(case (_, fk) => fk).
projecting {
case (head1 #:: _, head2 #:: _) => head1 -> head2
}
}
DataStream API
方法 原形 案例
mapWith map (DataStream) data.mapWith {
case (_, value) => value.toString
}
mapPartitionWith mapPartition (DataStream) data.mapPartitionWith {
case head #:: _ => head
}
flatMapWith flatMap (DataStream) data.flatMapWith {
case (_, name, visits) => visits.map(name -> _)
}
filterWith filter (DataStream) data.filterWith {
case Train(_, isOnTime) => isOnTime
}
keyingBy keyBy (DataStream) data.keyingBy {
case (id, _, _) => id
}
mapWith map (ConnectedDataStream) data.mapWith(
map1 = case (_, value) => value.toString,
map2 = case (_, _, value, _) => value + 1
)
flatMapWith flatMap (ConnectedDataStream) data.flatMapWith(
flatMap1 = case (_, json) => parse(json),
flatMap2 = case (_, _, json, _) => parse(json)
)
keyingBy keyBy (ConnectedDataStream) data.keyingBy(
key1 = case (_, timestamp) => timestamp,
key2 = case (id, _, _) => id
)
reduceWith reduce (KeyedDataStream, WindowedDataStream) data.reduceWith {
case ((_, sum1), (_, sum2) => sum1 + sum2
}
foldWith fold (KeyedDataStream, WindowedDataStream) data.foldWith(User(bought = 0)) {
case (User(b), (_, items)) => User(b + items.size)
}
applyWith apply (WindowedDataStream) data.applyWith(0)(
foldFunction = case (sum, amount) => sum + amount
windowFunction = case (k, w, sum) => // [...]
)
projecting apply (JoinedDataStream) data1.join(data2).
whereClause(case (pk, _) => pk).
isEqualTo(case (_, fk) => fk).
projecting {
case ((pk, tx), (products, fk)) => tx -> products
}
想了解更多关于每个方法的语义信息,请参考DataSet和DataStream API文档。
为了使用这些扩展方法,你需要引入如下类对于DataSet 来说:
import org.apache.flink.api.scala.extensions.acceptPartialFunctions
对于DataStream来说:
import org.apache.flink.streaming.api.scala.extensions.acceptPartialFunctions
下面的小例子中展示了如何组合使用这些扩展的方法(使用DataSet API):
object Main {
import org.apache.flink.api.scala.extensions._
case class Point(x: Double, y: Double)
def main(args: Array[String]): Unit = {
val env = ExecutionEnvironment.getExecutionEnvironment
val ds = env.fromElements(Point(1, 2), Point(3, 4), Point(5, 6))
ds.filterWith {
case Point(x, _) => x > 1
}.reduceWith {
case (Point(x1, y1), (Point(x2, y2))) => Point(x1 + y1, x2 + y2)
}.mapWith {
case Point(x, y) => (x, y)
}.flatMapWith {
case (x, y) => Seq("x" -> x, "y" -> y)
}.groupingBy {
case (id, value) => id
}
}
}