GWAS:mtag (Multi-Trait Analysis of GWAS) 分析

mtag (Multi-Trait Analysis of GWAS)作用:通过对多个表型相似的GWAS summary结果进行联合分析,发现更多的表型相关基因座。
以抑郁症状、神经质和主观幸福感这三个表型为例,分别对他们进行GWAS分析,鉴定得到32、9 和 13个基因座与它们相关。当将这三者进行mtag分析后,则可发现64、37 和 49 个基因座与它们相关,说明mtag可以提高发现表型相关基因座的能力;
具体见这篇文献:
https://www.nature.com/articles/s41588-017-0009-4

1、安装MTAG

conda create -n py27 python=2.7 #创建py27
conda activate py27 #激活
conda install numpy
conda install scipy
conda install pandas
conda install argparse
conda install bitarray
conda install joblib
conda install libgfortran==1
wget https://github.com/JonJala/mtag/archive/refs/heads/master.zip #这一步如果没有下载成功,可以自己到github下载mtag的安装包mtag-master.zip,再上传到服务器进行解压即可。
unzip master.zip

测试是否安装成功

python mtag.py -h

如果安装成功,会出现如下界面:


image

2、准备输入文件input.txt

输入文件包含以下几列:snpid, chr, bpos, a1, a2, freq, z, pval 和 n;
snpid指SNP的ID,一般用RS表示;
chr指染色体;
bpos指SNP的位置;
a1指效应位点;
a2指非效应位点;
freqa1的频率;
z指zscore,可通过beta/se获得;
pval指p值;
n指有效样本数;
输入文件input.txt的分隔符为空格,如下所示:

snpid chr bpos a1 a2 freq z pval n
rs1111 1 14444 a g 0.7153 -1.83870967741935 0.06587 60000
rs2222 1 15555 t g 0.027 0.0689655172413793 0.945 60000

3、运行mtag

conda activate py27
path=/path/to/mtag/
python /${path}/mtag.py  \
    --sumstats input1.txt,input2.txt \
    --out ./mtag_result \
    --n_min 0.0 \
    --stream_stdout &

#input1.txt和input2.txt指不同表型的GWAS summary 文件,具体格式准备见第二步;   

4、结果展示

结果会生成mtag_result_trait_1.txtmtag_result_trait_2.txt两个输出文件。如下所示:

snpid chr bpos a1 a2 z n freq mtag_beta mtag_se mtag_z mtag_pval
rs2736372 8 11106041 T C -7.71614161262 111111.111111 0.4179 -0.0324880486907 0.00419105765062 -7.7517541869 9.06317063823e-15
rs2060465 8 11162609 T C 7.69444599845 62500.0 0.6194 0.038971244976 0.00536428475564 7.26494709944 3.73184288437e-13


致谢橙子牛奶糖(陈文燕),请用参考模版:We thank the blogger (orange_milk_sugar, Wenyan Chen) for XXX

感谢小可爱们多年来的陪伴, 我与你们一起成长~

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,132评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,802评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,566评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,858评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,867评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,695评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,064评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,705评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,915评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,677评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,796评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,432评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,041评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,992评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,223评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,185评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,535评论 2 343

推荐阅读更多精彩内容