《深度学习》笔记

Chapter 4

4.3.1

Jacobian 和 Hessian矩阵
当Hessian的所有特征值都是正的牛顿法才适用,牛顿法会受到鞍点的影响,梯度下降不会被吸引到鞍点
深度学习中的大多数问题都难以表示成凸优化的形式
KKT方法是Lagrange乘子法(只允许等式约束)的推广
KKT

Chapter 5

5.6.1

最大后验(MAP)估计

©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容