Task03

一 过拟合与欠拟合及其解决方案

1 训练误差与泛化误差

训练误差:在训练集上的数据误差;

泛化误差:在其他任意数据集上的误差的期望,常用测试集误差来近似

模型选择:通常用验证集来进行模型选择

K折交叉验证:将数据集分成相等的K个子数据集来进行K次训练和验证,每次将其中1个当作验证集进行验证模型,另外K-1个数据集进行训练,最后K次后取训练误差的均值和验证误差的均值

2 过拟合和欠拟合

过拟合:训练集的误差远小于测试集的误差

欠拟合:模型无法得到较小的训练误差

其主要讨论模型复杂度和数据及大小,常用多项式拟合实验来观察比较训练误差和泛化误差

3 过拟合解决方法

权重衰减:等价于L2范数正则化,即损失函数添加惩罚项使得学得的模型参数值较小,L2范数惩罚项指的是模型权重参数每个元素的平方和与一个正的常数的乘积

丢弃法:当对隐藏层使用丢弃法时,该层的隐藏单元将有一定概率被丢弃掉(被清零),丢弃法不改变其输入的期望值

二 梯度消失和梯度爆炸

当神经网络的层数较多时,模型的数值稳定性容易变差,当多层感知机的层数较大时,较大层数的输出会出现消失或爆炸

环境因素:协变量偏移,标签偏移,概念偏移

Kaggle 房价预测实战

三 循环神经网络进阶

RNN存在的问题:梯度较容易出现衰减或爆炸(BPTT)

解决方法:

门控循环神经⽹络:捕捉时间序列中时间步距离较⼤的依赖关系

1 GRU

• 重置门有助于捕捉时间序列⾥短期的依赖关系;

• 更新门有助于捕捉时间序列⾥长期的依赖关系。

2 LSTM 长短期记忆long short-term memory

遗忘门:控制上一时间步的记忆细胞

输入门:控制当前时间步的输入

输出门:控制从记忆细胞到隐藏状态

记忆细胞:⼀种特殊的隐藏状态的信息的流动

3 深度循环神经网络

添加num_layers=2

gru_layer=nn.LSTM(input_size=vocab_size,hidden_size=num_hiddens,num_layers=2)

4 双向循环神经网络

添加 bidirectional=True

gru_layer=nn.GRU(input_size=vocab_size,hidden_size=num_hiddens,bidirectional=True)

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,884评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,755评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,369评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,799评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,910评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,096评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,159评论 3 411
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,917评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,360评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,673评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,814评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,509评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,156评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,123评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,641评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,728评论 2 351

推荐阅读更多精彩内容