知识点
Dropout - 将神经网络的某一层的输出节点数据随机丢弃一部分。
实质上等于创造了很多新的随机样本,通过增大样本量、减少特征数量来防止过拟合。
ReLU - 非线性函数 y = max(0, x)
(1) 单侧抑制
(2)相对宽阔的兴奋边界
(3)稀疏激活性
实现
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
# 加载MNIST数据集
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
sess = tf.InteractiveSession()
# 定义算法公式,也就是神经网络forward时的计算
in_units = 784 # 输入节点数
h1_units = 300 # 隐含层输出节点数
# 隐含层的权重,初始化化为标准差为0.1的正态分布
W1 = tf.Variable(tf.truncated_normal([in_units, h1_units], stddev=0.1))
# 隐含层的偏置,全部赋值为0
b1 = tf.Variable(tf.zeros([h1_units]))
# 输出层的权重,全部赋值为0
W2 = tf.Variable(tf.zeros([h1_units, 10]))
# 输出层的偏置,全部赋值为0
b2 = tf.Variable(tf.zeros([10]))
x = tf.placeholder(tf.float32, [None, in_units]) # 输入x
keep_prob = tf.placeholder(tf.float32) # Dropout的比率
# 定义一个隐含层:实现一个激活函数为ReLU的隐含层
hidden1 = tf.nn.relu(tf.matmul(x, W1) + b1)
# 实现Dropout的功能:随机将一部分节点置为0
hidden1_drop = tf.nn.dropout(hidden1, keep_prob)
# 输出层:softmax
y = tf.nn.softmax(tf.matmul(hidden1_drop, W2) + b2)
# 定义损失函数和选择优化器来优化Loss
y_ = tf.placeholder(tf.float32, [None, 10])
# 交叉信息熵
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_ * tf.log(y), reduction_indices=[1]))
# 自适应优化器Adagrad
train_step = tf.train.AdagradOptimizer(0.3).minimize(cross_entropy)
tf.global_variables_initializer().run()
# 训练步骤
for i in range(3000):
batch_xs, batch_ys = mnist.train.next_batch(100)
# 保留75%的节点
train_step.run({x: batch_xs, y_: batch_ys, keep_prob: 0.75})
# 对模型准确率评测
correct_prediction = tf.equal(tf.argmax(y, 1), tf.argmax(y_, 1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
print(accuracy.eval({x: mnist.test.images, y_: mnist.test.labels, keep_prob: 1.0}))
结果