SpringCloud Alibaba Sentinel 限流详解

点赞再看,养成习惯,微信搜索【牧小农】关注我获取更多资讯,风里雨里,小农等你,很高兴能够成为你的朋友。
项目源码地址:公众号回复 sentinel,即可免费获取源码

熔断规则

在上一篇文章中我们讲解了流控规则的使用和介绍Sentinel流控规则,今天我们给大家讲解sentinel更多样化的讲解以及流量控制。

官方文档:https://sentinelguard.io/zh-cn/docs/circuit-breaking.html

在面对调用链路中不稳定的资源如何保证高可用?在微服务中一个服务通常会调用其他的模块,可能是服务内的某个应用也有可能是另外的一个远程服务,数据库或者其他API调用。比如我们在支付的时候会调用(某付宝、某信、某联)提供的API,在查询订单我们会调用数据库连接,这些依赖的服务有可能会存在系统不稳定的情况,如果依赖的服务出现了不稳定的情况,请求响应时间过长,线程资源产生堆积,可能最终会耗尽服务的资源,导致服务变的不可用,这个时候 熔断降级 是保证服务高可用的重要措施之一。

image.png

如今的微服务都是分布式,有很多服务组成,不同服务之间互相调用,有着比较复杂的调用链路,在上面我们只是模拟绘画了支付操作,在实际的链路调用过程中会有着放大效果,如果某一环不稳定,可能会形成 蝴蝶效应 最终导致整个链路响应时间过长,甚至不可用,所以如果当我们的服务出现 不稳定且没有强依赖服务 调用的时,可以进行熔断降级,暂时限制不稳定的调用,避免影响整体服务。

image.png

熔断策略:

sentinel提供了三种熔断策略

image.png
  • 慢调用比例: 选择以慢调用比例作为阈值,需要设置允许的慢调用RT(最大响应时间),如果请求响应时间大于该值则认为慢调用,当统计时长内请求数 大于 最小请求数,且慢调用比例大于阈值,在熔断时长内的请求会被自动熔断,超过熔断时长进入半恢复状态(HALF_OPEN),如果下一个请求响应时间 小于 慢调用比例RT结束熔断,否则再次熔断。

  • 异常比例: 当统计时长内请求数 大于 最小请求数,且异常比例大于设定的阈值,在熔断时间内请求自动熔断,超过熔断时长进入半恢复状态(HALF_OPEN),如果下一个请求成功,结束熔断,否则再次熔断,异常比例阈值范围(0.0-1.0)代表百分比。

  • 异常数: 当统计时长内异常数 大于 阈值,自动进行熔断,超过熔断时长进入半恢复状态(HALF_OPEN),如果下一个请求成功,结束熔断,否则再次熔断。

熔断状态:

熔断状态 说明
OPEN 熔断开启,拒绝所有请求
HALF_OPEN 熔断半开启(恢复状态),如果接下来请求成功结束熔断,否则继续熔断
CLOSE 熔断关闭,请求通过

热点参数规则的核心属性:

属性(Field) 说明 默认值
resource 资源名(规则的作用对象 ) 必填
grade 熔断策略(支持慢调用比例/异常比例/异常数策略) 必填 慢调用比例
count 慢调用比例模式下为慢调用临界 RT(超出该值计为慢调用);异常比例/异常数模式下为对应的阈值
timeWindow 熔断时长,单位为 s
minRequestAmount 熔断触发的最小请求数,请求数小于该值时即使异常比率超出阈值也不会熔断(1.7.0 引入) 5
statIntervalMs 统计时长(单位为 ms),如 60*1000 代表分钟级(1.8.0 引入) 1000 ms
slowRatioThreshold 慢调用比例阈值,仅慢调用比例模式有效(1.8.0 引入)

熔断策略 - 慢调用比例

选择以慢调用比例作为阈值,需要设置允许的慢调用RT(最大响应时间),如果请求响应时间大于该值则认为慢调用,当统计时长内请求数 大于 最小请求数,且慢调用比例大于阈值,在熔断时长内的请求会被自动熔断,超过熔断时长进入半恢复状态(HALF_OPEN),如果下一个请求响应时间 小于 慢调用比例RT结束熔断,否则再次熔断。

image.png

如果我们一秒钟请求的数量大于5且RT(最大响应时间)大于我们设置的比例阈值的时候,触发熔断策略,比如我们有8个请求在一秒中进来,有5个慢调用,比例阈值设置为 0.1,这个时候我们满足(QPS > 5 且 RT > 比例阈值),进入下一步熔断策略,触发熔断器。

熔断器的内部使用的是断路器,这个好比我们做核酸,本来一栋一栋下去做,如果服务或者检测机器蹦了,通知你暂时不要下来,当机器恢复了,再通知你下来做,这个就类似我们的断路器。

image.png

案例演示:

    @GetMapping("/fuse")
    public String fuse(){
        try {
            TimeUnit.SECONDS.sleep(3);
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        return "hello fuse";
    }

设置我们的熔断策略,如果QPS>5请求RT>250且大于比例阈值触发熔断

image.png

通过JMeter测试,1秒钟发起10个线程请求,此时就会触发熔断效果,停止测试以后,10秒钟恢复正常

image.png

当我们启动线程之后,再去访问fuse接口,可以看到被熔断了,那么当我们停止线程之后,十秒之后去访问,就可以正常访问

image.png

熔断策略 - 异常比例

当统计时长内请求数 大于 最小请求数,且异常比例大于设定的阈值,在熔断时间内请求自动熔断,超过熔断时长进入半恢复状态(HALF_OPEN),如果下一个请求成功,结束熔断,否则再次熔断,异常比例阈值范围(0.0-1.0)代表百分比。异常降级仅仅只针对业务异常,对于sentinel本身的异常不生效。

image.png

测试:

    @GetMapping("/exptoin")
    public String exptoin(Integer id){
        if(id != null && id > 1){
            throw new RuntimeException("异常比例测试");
        }
        return "exptoin test";
    }
image.png

接下来我们用JMeter进行测试,设置Http请求地址:http://localhost:8006/exptoin?id=5 当启动JMeter的时候,会触发熔断,这个时候我们1秒钟发送10个请求超过了最小请求数,同事超过了阈值,满足两个条件,当熔断时间结束 以后恢复正常

image.png

熔断策略 - 异常数

当统计时长内异常数 大于 阈值,自动进行熔断,超过熔断时长进入半恢复状态(HALF_OPEN),如果下一个请求成功,结束熔断,否则再次熔断。

image.png

测试代码:

    @GetMapping("/exptoin/num")
    public String exptoinNum(Integer id){
        if(id != null && id > 1){
            throw new RuntimeException("异常数测试");
        }
        return "exptoinNum test";
    }

设置异常数策略,当1秒钟内请求超过5并且异常数大约5个的时候触发熔断

image.png
image.png
image.png

热点规则

官网文档:https://sentinelguard.io/zh-cn/docs/parameter-flow-control.html

什么是热点规则?热点我们很好理解,就是很火的东西在程序中可以理解成频繁访问的数据,那么有时候我们系统通缉你某个热点数据中访问频次最高的 前几个数据对其进行限制访问。

例如在秒杀系统中,某一款商品或者某几款商品,要定点秒杀,我们可以以商品ID为参数,在一定时间内对其进行限流

又或者如果某一个用户频繁的去访问我们系统,我们也可以针对于用户ID或者IP进行限制。

热点规则会统计入参参数中的热点数据,根据配置的限流阈值和模式,对启动的热点数据进行限流也就是流量控制。

image.png

在上图中我们携带了 是三个参数(axb\abc\xs)等,我们在sentinel中设置热点限流,我们设置的QPS为5,注意:该模式只支持QPS限制,如果我们的axb参数,命中了我们的规则,那么该请求携带的参数就会被限流。

image.png

在使用热点规则的时候,我们需要配合对应的@SentinelResource注解进行使用,才能够达到更加细粒度的流控规则。

@SentinelResource

  • value:代表资源名称,必填,通过name找到对应的规则
  • blockHandler: blockHandler 对应处理 BlockException 的方法名称,可选项,访问范围为public,返回类型需要和原方法匹配,并且在最后一需要添加BlockException类型的参数
image.png

测试代码:

    @GetMapping("/hotTest")
    @SentinelResource(value = "hotTest")
    public String testHotKey(@RequestParam(value = "v1",required = false) String v1,
                             @RequestParam(value = "v2",required = false)String v2){
        return "热点规则 -  热点:";
    }
image.png

在这里我们要注意,我们需要配置的是不带斜杠的资源名称,这个才是我们需要配置的项目

image.png

这个时候我们传入参数 http://localhost:8006/hotTest?v1,不停的刷新浏览器,这个时候会超过阈值,那么下面就会出现限流

image.png

但是,这个报错信息不是很友好,一般人根本不知道啥意思,我们可以使用@SentinelResource注解提供的另外一个参数blockHandler,这个参数是可以指定当出现异常时的处理方法,操作如下:

    @GetMapping("/hotTest")
    @SentinelResource(value = "hotTest",blockHandler = "handler_hot")
    public String testHotKey(@RequestParam(value = "v1",required = false) String v1,
                             @RequestParam(value = "v2",required = false)String v2){

        if("5".equals(v1)){
            throw new RuntimeException("报告有bug!!!");
        }
        return "热点规则 -  热点:";
    }
    
     //处理异常方法,方法签名要和对应的接口方法保持一致
    public String handler_hot(String v1, String v2, BlockException exception){
        return "请求过于频繁,请稍后再试.....";
    }

重新添加热点规则后,再去频繁的去访问,效果如下:

image.png

例外项数目

image.png

热点规则除了上述的基础使用外,还有例外项的操作,例外项参数可以达到更加细粒度的控制,比如我们在当前的案例中,目前v1参数在访问时超过阈值则会被限流,当时如果我们想通过参数v1等于具体的值的时候,来出发不同的流控效果时,改怎么操作呢?

比如我想要让v1等于2的时候,阈值达到50,其他的规则走上面的规则。

image.png

如果当前v1的值为2的时候,会走例外项里面的设置,也就是50的阈值,如果不是2会走普通的阈值规则,通过下图我们可以看到如果为2的值,无论我们点击多少次,都不会提示我们请求过于频繁。

image.png

系统规则

sentinel系统自适应限流是从整体维度对应用入口流量进行控制,结合应用的 load、CPU使用率、总体平均RT、入口QPS和并发线程数等几个维度的监控指标,通过自适应的流控策略,来让系统入口流量和系统的负载达到一个平衡,让系统尽可能的在面对高并发访问的同时保证系统整体的稳定。

系统保护是应用整体,所以不具备更细粒度的操作,只针对于入口流量有效。

image.png

系统规则支持的模式:

image.png
  • LOAD自适应: 针对于linxu/unix 机器有效,系统load(一分钟平均负载)作为启发指标,进行自适应系统保护。
  • RT:单台机器上所有的入口流量平均RT达到阈值时,触发系统保护,单位为毫秒
  • 线程数: 单台机器上所有入口流量的并发线程数达到阈值触发系统保护
  • 入口QPS: 单台机器上所有入口流量的QPS达到阈值触发系统保护
  • CPU 使用率: 当系统CPU使用率超过阈值时触发系统保护(取值范围:0.0 - 1.0)

演示:

通过入口QPS来进行测试,直接设置规则


image.png

最后测试效果不管现在我们访问那个接口只要超过阈值就会被限流


image.png

总结

到这里我们限流策略就讲完了,其实并不复杂,我们需要了解其中每个规则如何使用,效果是怎样的,最好是自己动手试一试,会更有成就感。

我是牧小农,怕什么真理无穷,进一步有进一步的欢喜,大家加油

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,948评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,371评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,490评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,521评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,627评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,842评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,997评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,741评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,203评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,534评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,673评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,339评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,955评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,770评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,000评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,394评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,562评论 2 349

推荐阅读更多精彩内容