ImageNet 2012数据集

一、数据集下载

ImageNet2012: ISLVRC2012

ILSVRC 2012

Note:数据集下载需要注册学生账号。此外,可以使用迅雷会员下载,一个晚上就可以下载完成

二、数据集处理

2.1 训练集处理

ILSVRC2012_img_train.tar包含1000个小的tar压缩包,每个tar对应一类图片,压缩包的名称就代表这一类。首先将tar解压到指定文件夹

mkdir ILSVRC2012_img_train
tar xvf ILSVRC2012_img_train.tar -C ILSVRC2012_img_train
cd ILSVRC2012_img_train

接着,提取ILSVRC2012_img_train目录中的各个子tar文件,可以在目录中使用如下脚本处理:

for f in *.tar; do
 d=`basename $f .tar`
 mkdir $d
 tar xf $f -C $d
done

脚本是通过touch unzip.sh生成脚本文件,可以使用vim写入,最后执行bash ./unzip.sh

处理完成后可以使用rm *.tar将子tar文件删除。

处理完成后如下图所示:

Training Dataset

2.2 验证集处理

验证集包含5W张图片,直接对tar文件进行解压即可。

mkdir ILSVRC2012_img_val
tar xvf ILSVRC2012_img_val.tar -C ILSVRC2012_img_val

如果需要将val进行分类,也就是不同类别图片放到不同文件夹中,需要额外执行以下命令:

# 1.获取分类脚本
cd ILSVRC2012_img_val
wget https://raw.githubusercontent.com/soumith/imagenetloader.torch/master/valprep.sh

# 2.执行脚本进行分类
bash ./valprep.sh

# 3.删除脚本
rm valprep.sh

# 分类之后的验证集结构
#  imagenet/ILSVRC2012_img_val/
#  ├── n01440764
#  │   ├── ILSVRC2012_val_00000293.JPEG
#  │   ├── ILSVRC2012_val_00002138.JPEG
#  │   ├── ......
#  ├── ......

三、加载数据集

from torchvision import datasets

# args.data = "ILSVRC2012_img_"
traindir = args.data + "train"
valdir = args.data + "val"
normalize = transforms.Normalize(mean=[0.485, 0.456, 0.406],
                             std=[0.229, 0.224, 0.225])

train_dataset = datasets.ImageFolder(
    traindir,
    transforms.Compose([
        transforms.RandomResizedCrop(224),
        transforms.RandomHorizontalFlip(),
        transforms.ToTensor(),
        normalize,
    ]))

val_dataset = datasets.ImageFolder(
    valdir,
    transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        normalize,
    ]))

train_loader = torch.utils.data.DataLoader(
    train_dataset, batch_size=batch_size, shuffle=True,
    num_workers=workers, pin_memory=True)

val_loader = torch.utils.data.DataLoader(
    val_dataset, batch_size=batch_size, shuffle=False,
    num_workers=workers, pin_memory=True)

Reference

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,458评论 6 513
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,030评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,879评论 0 358
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,278评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,296评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,019评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,633评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,541评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,068评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,181评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,318评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,991评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,670评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,183评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,302评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,655评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,327评论 2 358

推荐阅读更多精彩内容