深度学习_Softmax从零开始

Softmax 从零开始实现

导入必要的包

from mxnet import gluon
from mxnet import nd
from mxnet.gluon import data as gdata,loss as gloss
import d2lzh as d2l
from mxnet import autograd as ag

导入数据

# 下载训练集 和 下载测试集
# 并且读取小批量数据
batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)
# 查看数据导入的情况
print(len(train_iter),len(test_iter))
for x,y in train_iter:
    print(x,y)
    break
235 40

[[[[0. 0. 0. ... 0. 0. 0.]
   [0. 0. 0. ... 0. 0. 0.]
   [0. 0. 0. ... 0. 0. 0.]
   ...
   [0. 0. 0. ... 0. 0. 0.]
   [0. 0. 0. ... 0. 0. 0.]
   [0. 0. 0. ... 0. 0. 0.]]]


 [[[0. 0. 0. ... 0. 0. 0.]
   [0. 0. 0. ... 0. 0. 0.]
   [0. 0. 0. ... 0. 0. 0.]
   ...
   [0. 0. 0. ... 0. 0. 0.]
   [0. 0. 0. ... 0. 0. 0.]
   [0. 0. 0. ... 0. 0. 0.]]]


 [[[0. 0. 0. ... 0. 0. 0.]
   [0. 0. 0. ... 0. 0. 0.]
   [0. 0. 0. ... 0. 0. 0.]
   ...
   [0. 0. 0. ... 0. 0. 0.]
   [0. 0. 0. ... 0. 0. 0.]
   [0. 0. 0. ... 0. 0. 0.]]]


 ...


 [[[0. 0. 0. ... 0. 0. 0.]
   [0. 0. 0. ... 0. 0. 0.]
   [0. 0. 0. ... 0. 0. 0.]
   ...
   [0. 0. 0. ... 0. 0. 0.]
   [0. 0. 0. ... 0. 0. 0.]
   [0. 0. 0. ... 0. 0. 0.]]]


 [[[0. 0. 0. ... 0. 0. 0.]
   [0. 0. 0. ... 0. 0. 0.]
   [0. 0. 0. ... 0. 0. 0.]
   ...
   [0. 0. 0. ... 0. 0. 0.]
   [0. 0. 0. ... 0. 0. 0.]
   [0. 0. 0. ... 0. 0. 0.]]]


 [[[0. 0. 0. ... 0. 0. 0.]
   [0. 0. 0. ... 0. 0. 0.]
   [0. 0. 0. ... 0. 0. 0.]
   ...
   [0. 0. 0. ... 0. 0. 0.]
   [0. 0. 0. ... 0. 0. 0.]
   [0. 0. 0. ... 0. 0. 0.]]]]
<NDArray 256x1x28x28 @cpu(0)> 
[6 9 7 2 1 7 6 6 9 0 6 3 1 4 3 4 4 2 6 3 6 9 0 2 1 2 2 7 7 1 8 0 1 7 6 1 4
 9 2 6 3 7 9 0 5 9 7 0 8 8 1 8 6 1 6 9 4 7 7 4 1 4 4 5 7 8 7 7 5 6 4 2 9 0
 0 6 0 5 7 8 7 8 9 3 3 7 1 0 9 6 5 4 9 4 4 9 4 2 4 7 7 4 5 9 6 8 7 5 1 4 4
 3 5 3 5 0 7 1 0 5 6 1 6 5 4 9 4 7 7 3 8 7 7 7 0 5 4 2 3 2 2 0 9 0 3 8 0 6
 4 4 4 5 8 9 8 7 5 6 0 6 5 6 8 2 6 9 9 5 2 0 9 4 3 4 8 0 5 5 8 2 4 1 8 8 9
 7 9 1 7 2 8 7 8 6 4 7 7 3 0 8 0 9 0 0 5 9 0 8 2 8 6 0 9 2 7 5 7 9 7 5 4 0
 3 8 7 5 4 9 1 2 7 8 1 7 9 8 8 8 0 0 0 9 6 6 7 8 1 4 1 7 6 1 1 8 6 3]
<NDArray 256 @cpu(0)>

初始化模型参数

num_inputs = 784
num_outputs = 10

w = nd.random.normal(scale=0.01,shape=(num_inputs,num_outputs))
b = nd.zeros(shape=num_outputs)

#附上梯度
w.attach_grad()
b.attach_grad()

定义模型

#实现softmax运算
def softmax(X):
    X_exp = X.exp()
    partition = X_exp.sum(axis=1,keepdims=True)
    return X_exp/partition

#定义神经网络计算
def net(X):
    return softmax(nd.dot(X.reshape(-1,num_inputs),w)+b)

定义损失函数

def cross_entropy(y_hat,y):
    return -nd.pick(y_hat,y).log()

确定精度

def accuracy(y_hat,y):
    return (y_hat.argmax(axis=1) == y.astype('float32')).mean().asscalar()
#准确度
def evaluate_accuracy(data_iter,net):
    acc_sum,n = 0.0,0
    for X,y in data_iter:
        y_hat = net(X)
        acc_sum += (y_hat.argmax(axis=1) == y.astype('float32')).mean().asscalar()
        n += y.size
    return acc_sum/n

优化函数

def sgd(params,lr,batch_size):
    for param in params:
        param[:] = param - lr*param.grad/batch_size

训练模型

num_epochs,lr = 5,0.1
def train_ch3(net,train_iter,test_iter,loss,num_epochs,batch_size,params=None,lr=None,trainer=None):
    for epoch in range(1,num_epochs+1):
        train_l_sum,train_acc_sum,n = 0.0,0.0,0
        for X,y in train_iter:
            with ag.record():
                y_hat = net(X)
                l = loss(y_hat,y).sum()
            l.backward()
            if trainer is None:
                sgd(params,lr,batch_size)
            else:
                trainer.step(batch_size)
            y = y.astype('float32')
            train_l_sum += y.sum().asscalar()
            train_acc_sum += (y_hat.argmax(axis=1) == y).sum().asscalar()
            n += y.size
        test_acc = evaluate_accuracy(test_iter,net)
        print("epoch %d ,loss %f ,train_acc %f ,test_acc %f" % (epoch,train_l_sum/n,train_acc_sum/n,test_acc))
    

train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, batch_size,[w, b], lr)
epoch 1 ,loss 4.500000 ,train_acc 0.747417 ,test_acc 0.003201
epoch 2 ,loss 4.500000 ,train_acc 0.810550 ,test_acc 0.003296
epoch 3 ,loss 4.500000 ,train_acc 0.823350 ,test_acc 0.003323
epoch 4 ,loss 4.500000 ,train_acc 0.829450 ,test_acc 0.003361
epoch 5 ,loss 4.500000 ,train_acc 0.834900 ,test_acc 0.003365

展示图片

for X, y in test_iter:
    break

true_labels = d2l.get_fashion_mnist_labels(y.asnumpy())
pred_labels = d2l.get_fashion_mnist_labels(net(X).argmax(axis=1).asnumpy())
titles = [true + '\n' + pred for true, pred in zip(true_labels, pred_labels)]

d2l.show_fashion_mnist(X[0:9], titles[0:9])
预测结果
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容