遗传算法解TSP(3)-效果验证

引言

本章是遗传算法求解TSP问题的最后一章,主要做一些收尾的工作。介绍一下如何用GeneticAlgorithm这个类去驱动遗传算法工作流程的执行,以及遗传算法所涉及的可配置参数Constant,最后给出遗传算法分别在10个城市、20个城市和31个城市的TSP问题中的效果表现。

工作流程

正如前面提到过的,遗传算法先后经过初始化种群、计算适应度、选择操作、交叉操作、变异操作和收敛条件判断,最后选出适应度最优的个体作为最终解。所以现在我们需要把前面的各种操作组合起来,使得能完整地执行一轮遗传算法的工作流程,在这个基础上,再迭代(遗传)若干代,最后收敛到某个较优解。
落实到代码上,我们仍采用面向对象思想,将initSpeciesList()、calFitness()、select()、cross()和mutate()这些方法归在GeneticAlogrithm类中,然后顺次调用,如下面所示:

//开始遗传
SpeciesNode run()
{
    //创建初始种群
    List<SpeciesNode> speciesList = initSpeciesList();
    
    //遗传迭代
    for(int i=1;i<=Constant.DEVELOP_NUM;i++)
    {
        //选择
        select(speciesList);
        
        //交叉
        crossover(speciesList);
        
        //变异
        mutate(speciesList);
    }    
    
    //返回最优解
    return getBest(speciesList);
}

参数配置

从前面对遗传算法的讲述中不难发现,算法涉及许多不变的常量,比如地图数据、种群数、进化代数、交叉概率、变异概率,甚至更多对遗传算法改进后涉及的参数,写出来就像下面这样:

//常量类
public class Constant 
{
    //遗传算法参数
    static final int SPECIES_NUM = 200; //种群数
    static final int DEVELOP_NUM = 100; //进化代数
    static final float tp = 0.25; //精英复制比重
    static final float pcl = 0.6f, pch = 0.95f;//交叉概率
    static final float pm = 0.4f;//变异概率
    
    //地图数据
    static int CITY_NUM; //城市数
    static final float[][] disMap; //路线长度
    static
    {
        //城市坐标
        int[][] cityPosition={
                {60,200},{180,200},{80,180},{140,180},
                {20,160},{100,160},{200,160},{140,140},
                {40,120},{100,120},{180,100},{60,80},
                {120,80},{180,60},{20,40},{100,40},
                {200,40},{20,20},{60,20},{160,20}}; //20个城市(最优解:870)
        //初始化计算完全图所有路线长度
        CITY_NUM=cityPosition.length;
        disMap=new float[CITY_NUM][CITY_NUM];
        for(int i=0;i<CITY_NUM;i++)
        {
            for(int j=i;j<CITY_NUM;j++)
            {
                float dis = (float) Math.sqrt(Math.pow((cityPosition[i][0] - cityPosition[j][0]),2) + Math.pow((cityPosition[i][1] - cityPosition[j][1]),2));
                
                disMap[i][j]=dis;
                disMap[j][i]=disMap[i][j];
            }
        }    
    }
}

实验结果

Constant类中的cityPosition参数用来配置城市的坐标数据,所以我分别选取了网上一些公认的10个城市、20个城市和31个城市的坐标数据,及它们的最优解,来与我写的遗传算法得到的解进行对比。下面是公认的地图数据:



下面是本文遗传算法求得的最短路线及长度数据:


结语

从上表不难发现,随着问题规模的扩大,遗传算法发现全局最优解的几率仍然很大(通过对比后续文章蚁群算法解TSP(3)-效果验证可以发现),这不失为它的优点。但缺点是收敛性不高,这是因为受选择算子、交叉算子、变异算子的影响较大,解群容易波动,故而不太稳定,有时需要消耗更多的计算时间去弥补收敛性不好的缺陷。
遗传算法的用途显然不仅限于TSP问题,任何需要优化模型参数的问题都可以用它来解决,比如排课排班、机器人路径规划甚至应用于人工神经网络等,从而曲线式地避免了利用穷举方法产生的高昂成本与低效。
遗传算法求解TSP问题的相关内容就写到这里啦。当然需要声明的是,本文仅仅是给出了一个朴素遗传算法的实现方案,更多对其优化的方案可以去网上查阅,相信那里肯定还有一片新的天地。然后注意本文给出的代码都是一些代码片段,并不能完整运行,有的地方不是探讨的核心内容,所以甚至索性省去了。如果需要完整代码可以在我的GitHub上下载。后续会再写一个用“蚁群算法”求解TSP问题的系列文章,欢迎大家关注。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,684评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,143评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,214评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,788评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,796评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,665评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,027评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,679评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,346评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,664评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,766评论 1 331
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,412评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,015评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,974评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,073评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,501评论 2 343

推荐阅读更多精彩内容