神经网络与深度学习的读后感

神经网络是基于对机器对于人脑的研究,使机器学习技术正在走进数据中心,它既能改善内部IT管理,还能使关键业务流程更加智能化。你可能已经听说过深度学习的神秘性了,它涉及到一切领域,从系统管理到自动驾驶汽车。到底深度学习是一个刚刚在世人面前揭开面纱的非常聪明的新兴人工智能,还是仅仅一种营销宣传手段,将已有的复杂机器学习算法重新包装成为新的卖点?

  深度学习无疑激发了大众的想象力,但它其实并不那么复杂。在技术层面上,深度学习主要指大规模运行的大型计算密集型神经网络。这些神经网络往往是由难以用基于逻辑和规则的机器学习方法进行处理的大数据集训练而成,如图像、语音、视频和其他内在具有复杂模式的密集数据。

  神经网络本身并不新。几乎从现代计算机开创阶段起,神经网络算法已经被研究用于复杂数据流中辅助识别隐藏的内在模式。在这个意义上,深度学习是建立在众所周知的机器学习技术上的。然而,当新兴计算复杂度更高的神经网络算法与如今的大数据集合应用到一起,创造出了重大的新机遇。使用低成本的云服务或商业scale-out大数据结构,可以创建这些"深度"模型,并实时应用于大规模应用场景中。

  敏感的神经网络

  神经网络研究起步于上世纪50年代和60年代,最早是为研究人类大脑如何工作而建模出来的。神经网络由多层节点组成,这些节点相互连接组成一张大网,有如大脑中的神经元。每个节点接收输入信号,接下来,它通过一个预先定义好的"激活功能"发出一个输出信号,并传给其他节点,同时确定什么时候节点应该进入活跃状态。简单的,你可以认为节点如何工作取决于其兴奋程度,当一个节点收到一组输入后变得兴奋时,它可以产生一定程度的输出信号,并传递给它的下游节点。有趣的是,一个节点兴奋起来后,它的输出信号可以是正也可以是负;一些节点激活后实际上会抑制另一些节点的兴奋。

  节点通过链接互连,每个链接有其自己的权重变量。一个链接的权重会调整经过它传输的信号。神经网络通过逐渐调整其整个网络的链接权重,适应和学习如何识别模式,最终只有被正确识别的模式会产生一个完整的遍布全网络的兴奋传递。

  一般情况下,输入数据被格式化为一个输入信号,链接到第一层外部节点。这些节点随后向一个或多个隐藏层发送信号,最后输出层节点发出一个"反馈"给外部世界。由于学习(也即智能)是隐含在链路权重中的,实际应用的核心问题是搞清楚怎么调节或训练所有的链路权重以实现正确模式的应答。今天,神经网络主要通过后向传播的增量学习技术,用在训练数据中寻找正确的模式来完成学习过程。当神经网络生成一种有用的方式识别出正确的样本时,该方法相应的给予链路"奖励",当神经网络识别出错误的样本时,则给予惩罚。

  然而,不可能存在一个能够适用于任何给定问题的神经网络架构。此时机器学习专业知识就是非常重要的了,因为给定一定数量的节点、其激励功能、一定数量的隐藏层以及所有节点的连接关系(例如是密集连接还是稀疏连接,是否存在内部反馈或循环环路),可能存在无数种潜在的神经网络配置方式。传统研究中,受限于硬件条件,神经网络隐藏层的数量设置得很少,即使如此,神经网络已经展现出超过人类的,惊人的和熟练的学习能力。如今,深度学习神经网络可能具有数百层网络,能够完全胜任深度奥妙问题的处理。

  深度学习实际应用的关键是搞清楚如何在成百上千个并行计算核心上有效地拓展出大型神经网络,然后用巨量大数据集进行高效的训练。过去,这需要远超企业数据中心规模的高性能计算设备HPC来实现。今天,NVIDIA、Mellanox和DataDirect Networks公司正在推出适合一般企业数据中心规模的HPC产品。例如NVIDIA的DGX-1,本质上它是一台设计用于深度学习,集成了8块高端GPU运算卡的超融合超级计算机,令人惊讶的是,它只有4U这么大,显然可以被一般公司所接受。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,372评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,368评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,415评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,157评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,171评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,125评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,028评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,887评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,310评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,533评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,690评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,411评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,004评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,812评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,693评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,577评论 2 353

推荐阅读更多精彩内容