coreML单文件部署多个模型

image.png

image.png

如上图几个模型会对应生成相应的m文件,采用下面的方法可以只用一个m文件来加载多个模型

#import <Foundation/Foundation.h>

#import <CoreML/CoreML.h>
#import <stdint.h>

NS_ASSUME_NONNULL_BEGIN

/// Model Prediction Input Type
API_AVAILABLE(macos(10.13), ios(11.0), watchos(4.0), tvos(11.0))
@interface MLCoreModelInput : NSObject<MLFeatureProvider>

//the input name,default is image
@property (nonatomic, strong) NSString *inputName;

//data as color (kCVPixelFormatType_32BGRA) image buffer, 224 pixels wide by 224 pixels high
@property (readwrite, nonatomic) CVPixelBufferRef data;

- (instancetype)init NS_UNAVAILABLE;

- (instancetype)initWithData:(CVPixelBufferRef)data;

@end

API_AVAILABLE(macos(10.13), ios(11.0), watchos(4.0), tvos(11.0))
@interface MLCoreModelOutput : NSObject<MLFeatureProvider>

//the output name, defalut is prob
@property (nonatomic, strong) NSString *outputName;

// prob as multidimensional array of doubles
@property (readwrite, nonatomic) MLMultiArray *prob;

- (instancetype)init NS_UNAVAILABLE;
- (instancetype)initWithProb:(MLMultiArray *)prob;
@end

/// Model Prediction Output Type
API_AVAILABLE(macos(10.13), ios(11.0), watchos(4.0), tvos(11.0))
@interface MLCoreModelMapOutput : NSObject<MLFeatureProvider>

//the output value name, defalut is prob
@property (nonatomic, strong) NSString *outputValueName;
//the output label name, defalut is classLabel
@property (nonatomic, strong) NSString *outputLabelName;

/// prob as dictionary of strings to doubles
@property (readwrite, nonatomic) NSDictionary<NSString *, NSNumber *> * prob;

/// classLabel as string value
@property (readwrite, nonatomic) NSString * classLabel;
- (instancetype)init NS_UNAVAILABLE;
- (instancetype)initWithProb:(NSDictionary<NSString *, NSNumber *> *)prob classLabel:(NSString *)classLabel;
@end


// Class for model loading and prediction
API_AVAILABLE(macos(10.13), ios(11.0), watchos(4.0), tvos(11.0))
@interface MLCoreModel : NSObject

@property (readonly, nonatomic, nullable) MLModel * model;

//the input name,default is image
@property (nonatomic, strong) NSString *inputNodeName;
//the output value name, defalut is prob
@property (nonatomic, strong) NSString *outputValueName;
//the output label name, defalut is classLabel
@property (nonatomic, strong) NSString *outputLabelName;

- (nullable instancetype)initWithContentsOfURL:(NSURL *)url error:(NSError * _Nullable * _Nullable)error;

/**
 Make a prediction using the standard interface
 @param input an instance of ResnetNSFWInput to predict from
 @param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
 @return the prediction as ResnetNSFWOutput
 */
- (nullable MLCoreModelOutput *)predictionFromFeatures:(MLCoreModelInput *)input error:(NSError * _Nullable * _Nullable)error;

/**
 Make a prediction using the standard interface
 @param input an instance of ResnetNSFWInput to predict from
 @param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
 @return the prediction as MLCoreModelMapOutput
 */
- (nullable MLCoreModelMapOutput *)predictionMapFromFeatures:(MLCoreModelInput *)input error:(NSError * _Nullable * _Nullable)error;
/// All models can predict on a specific set of input features.
- (nullable id<MLFeatureProvider>)prediction:(MLCoreModelInput *)input
                                                   error:(NSError **)error;
/**
 Make a prediction using the convenience interface
 @param data as color (kCVPixelFormatType_32BGRA) image buffer, 224 pixels wide by 224 pixels high:
 @param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
 @return the prediction as ResnetNSFWOutput
 */
- (nullable MLCoreModelOutput *)predictionFromData:(CVPixelBufferRef)data error:(NSError * _Nullable * _Nullable)error;

/**
 Make a prediction using the convenience interface
 @param data as color (kCVPixelFormatType_32BGRA) image buffer, 224 pixels wide by 224 pixels high:
 @param error If an error occurs, upon return contains an NSError object that describes the problem. If you are not interested in possible errors, pass in NULL.
 @return the prediction as MLCoreModelMapOutput
 */
- (nullable MLCoreModelMapOutput *)predictionMapFromData:(CVPixelBufferRef)data error:(NSError * _Nullable * _Nullable)error;

@end

NS_ASSUME_NONNULL_END

#import "MLCoreModel.h"

#define DefalutInputName            @"image"
#define DefalutOutputValueName      @"prob"
#define DefalutOutputLabelName      @"classLabel"

@implementation MLCoreModelInput

- (instancetype)initWithData:(CVPixelBufferRef)data {
    if (self) {
        _data = data;
        _inputName = DefalutInputName;
    }
    return self;
}

- (NSSet<NSString *> *)featureNames {
    return [NSSet setWithArray:@[self.inputName]];
}

- (nullable MLFeatureValue *)featureValueForName:(nonnull NSString *)featureName {
    if ([featureName isEqualToString:self.inputName]) {
        return [MLFeatureValue featureValueWithPixelBuffer:_data];
    }
    
    return nil;
}

@end

@implementation MLCoreModelOutput

- (instancetype)initWithProb:(MLMultiArray *)prob{
    if (self) {
        _prob = prob;
        _outputName = DefalutOutputValueName;
    }
    return self;
}

- (NSSet<NSString *> *)featureNames{
    return [NSSet setWithArray:@[self.outputName]];
}

- (nullable MLFeatureValue *)featureValueForName:(nonnull NSString *)featureName {
    if ([featureName isEqualToString:self.outputName]) {
        return [MLFeatureValue featureValueWithMultiArray:_prob];
    }
    
    return nil;
}

@end

@implementation MLCoreModelMapOutput

- (instancetype)initWithProb:(NSDictionary<NSString *, NSNumber *> *)prob classLabel:(NSString *)classLabel {
    if (self) {
        _prob = prob;
        _classLabel = classLabel;
        _outputValueName = DefalutOutputValueName;
        _outputLabelName = DefalutOutputLabelName;
    }
    return self;
}

- (NSSet<NSString *> *)featureNames {
    return [NSSet setWithArray:@[self.outputValueName, self.outputLabelName]];
}

- (nullable MLFeatureValue *)featureValueForName:(NSString *)featureName {
    if ([featureName isEqualToString:self.outputValueName]) {
        return [MLFeatureValue featureValueWithDictionary:_prob error:nil];
    }
    if ([featureName isEqualToString:self.outputLabelName]) {
        return [MLFeatureValue featureValueWithString:_classLabel];
    }
    return nil;
}

@end

@implementation MLCoreModel

- (nullable instancetype)initWithContentsOfURL:(NSURL *)url error:(NSError * _Nullable * _Nullable)error{
    self = [super init];
    if (!self) { return nil; }
    
    _model = [MLModel modelWithContentsOfURL:url error:error];
    if (_model == nil) {
        return nil;
    }
    
    _outputValueName = DefalutOutputValueName;
    _outputLabelName = DefalutOutputLabelName;
    _inputNodeName = DefalutInputName;
    return self;
}

- (nullable MLCoreModelOutput *)predictionFromFeatures:(MLCoreModelInput *)input error:(NSError * _Nullable * _Nullable)error{
    id<MLFeatureProvider> outFeatures = [_model predictionFromFeatures:input error:error];
    MLCoreModelOutput * result = [[MLCoreModelOutput alloc] initWithProb:[outFeatures featureValueForName:self.outputValueName].multiArrayValue];
    return result;
}
- (nullable id<MLFeatureProvider>)prediction:(MLCoreModelInput *)input
                                       error:(NSError **)error
{
   id<MLFeatureProvider> outFeatures = [_model predictionFromFeatures:input error:error];
    return outFeatures;
}
- (nullable MLCoreModelMapOutput *)predictionMapFromFeatures:(MLCoreModelInput *)input error:(NSError * _Nullable * _Nullable)error{
    id<MLFeatureProvider> outFeatures = [_model predictionFromFeatures:input error:error];
    MLCoreModelMapOutput * result = [[MLCoreModelMapOutput alloc] initWithProb:(NSDictionary<NSString *, NSNumber *> *)[outFeatures featureValueForName:self.outputValueName].dictionaryValue classLabel:[outFeatures featureValueForName:self.outputLabelName].stringValue];
    return result;
}


- (nullable MLCoreModelOutput *)predictionFromData:(CVPixelBufferRef)data error:(NSError * _Nullable * _Nullable)error{
    MLCoreModelInput *input_ = [[MLCoreModelInput alloc] initWithData:data];
    input_.inputName = self.inputNodeName;
    return [self predictionFromFeatures:input_ error:error];
}

- (nullable MLCoreModelMapOutput *)predictionMapFromData:(CVPixelBufferRef)data error:(NSError * _Nullable * _Nullable)error{
    MLCoreModelInput *input_ = [[MLCoreModelInput alloc] initWithData:data];
    input_.inputName = self.inputNodeName;
    return [self predictionMapFromFeatures:input_ error:error];
}

@end

使用模型的时候设置一下inputNodeName,outputValueName

        self.coreModel = [[MLCoreModel alloc] initWithContentsOfURL:[NSURL URLWithString:saveURL] error:nil];
        if (self.outputLabelsName)  self.coreModel.outputLabelName = self.outputLabelsName;
        if (self.outputValueName)   self.coreModel.outputValueName = self.outputValueName;

模型具有多个输出示例如下:

    NSError *error;
    _model_pnet =[[MLCoreModel alloc]initWithContentsOfURL:[NSURL URLWithString:saveURL] error:&error];
    NSError *error;
    MLCoreModelInput *input = [[MLCoreModelInput alloc] initWithData:pixelBuffer];
    input.inputName = @"data";
    id<MLFeatureProvider> outFeatures = [_model_pnet prediction:input error:&error];
    MLMultiArray *conv4_2 = [outFeatures featureValueForName:@"conv4-2"].multiArrayValue;
    MLMultiArray * prob1 = [outFeatures featureValueForName:@"prob1"].multiArrayValue;
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,039评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,223评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,916评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,009评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,030评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,011评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,934评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,754评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,202评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,433评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,590评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,321评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,917评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,568评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,738评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,583评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,482评论 2 352

推荐阅读更多精彩内容

  • 1、通过CocoaPods安装项目名称项目信息 AFNetworking网络请求组件 FMDB本地数据库组件 SD...
    阳明先生_X自主阅读 15,979评论 3 119
  • 《刘润商学院》12.19 ‘’SMART原则,代表的是具体的、可衡量的、可实现的、相关的、有时间限制的。‘’ 决策...
    台一DDM路静娟阅读 266评论 0 0
  • 今天看了《降临》,里面美国又黑我们中国,居然说我们中国第一个想打外星人,他们美国又成了拯救人类的大救星! 靠,我们...
    大脑董事会阅读 314评论 0 0
  • 果真平等是每个人都还是自己的时候才可以算作平等。 三月春风扫过,整个世界都泛出阵阵绿意,出门前妈妈送我到村口,因为...
    珍珠儿阅读 293评论 0 0