Given a set of candidate numbers (C) and a target number (T), find all unique combinations in C where the candidate numbers sums to T.
The same repeated number may be chosen from C unlimited number of times.
Note:
- All numbers (including target) will be positive integers.
- The solution set must not contain duplicate combinations.
For example, given candidate set [2, 3, 6, 7]
and target 7,
A solution set is:
[
[7],
[2, 2, 3]
]
思路
利用栈,如果要入栈的数加上已入栈的数的和小于target, 则入栈;如果等于target,则复制该栈,加入返回结果,然后从栈取出一个数,取其下一个数准备入栈;如果大于target, 则从栈取出一个数,取其下一个数准备入栈。注意一些边界条件的判断
Python代码
class Solution(object):
def combinationSum(self, candidates, target):
"""
:type candidates: List[int]
:type tatget: int
:rtype List[List[int]]
"""
nums = []
indexes = []
returnLists = []
sum = 0
i = 0
candidates.sort()
while True:
while i >= len(candidates):
if len(nums) == 0:
return returnLists
sum -= nums.pop()
i = indexes.pop()+1
if sum + candidates[i] < target:
nums.append(candidates[i])
indexes.append(i)
sum += candidates[i]
elif sum + candidates[i] > target:
if len(nums) > 0:
sum -= nums.pop()
i = indexes.pop()+1
else:
return returnLists
elif sum + candidates[i] == target:
newNums = nums[:]
newNums.append(candidates[i])
returnLists.append(newNums)
if len(nums) > 0:
sum -= nums.pop()
i = indexes.pop()+1
else:
i += 1
assert Solution().combinationSum([2,3,4], 7)==[[2,2,3], [3,4]]
assert Solution().combinationSum([2,3,6,7], 7)==[[2,2,3], [7]]
assert Solution().combinationSum([2], 1) == []