上一篇中我们完成了传统的deformable convolution的代码解读,因为现在DCN已经有了version2,所以deformable convolution也有了自己的更新版本:modulated deformable convolution。实际上modulated deformable convolution可以直接在原来的deformable convolution上直接得到,但是为了更快的运算速度,mmdetection也将其写成了CUDA代码,这里我们就来简单看一下。
原始论文地址:这里
void modulated_deform_conv_cuda_forward(
at::Tensor input, at::Tensor weight, at::Tensor bias, at::Tensor ones,
at::Tensor offset, at::Tensor mask, at::Tensor output, at::Tensor columns,
int kernel_h, int kernel_w, const int stride_h, const int stride_w,
const int pad_h, const int pad_w, const int dilation_h,
const int dilation_w, const int group, const int deformable_group,
const bool with_bias) {
AT_CHECK(input.is_contiguous(), "input tensor has to be contiguous");
AT_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous");
const int batch = input.size(0);
const int channels = input.size(1);
const int height = input.size(2);
const int width = input.size(3);
const int channels_out = weight.size(0);
const int channels_kernel = weight.size(1);
const int kernel_h_ = weight.size(2);
const int kernel_w_ = weight.size(3);
if (kernel_h_ != kernel_h || kernel_w_ != kernel_w)
AT_ERROR("Input shape and kernel shape wont match: (%d x %d vs %d x %d).",
kernel_h_, kernel_w, kernel_h_, kernel_w_);
if (channels != channels_kernel * group)
AT_ERROR("Input shape and kernel channels wont match: (%d vs %d).",
channels, channels_kernel * group);
const int height_out =
(height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
const int width_out =
(width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;
if (ones.ndimension() != 2 ||
ones.size(0) * ones.size(1) < height_out * width_out) {
// Resize plane and fill with ones...
ones = at::ones({height_out, width_out}, input.type());
}
// resize output
output = output.view({batch, channels_out, height_out, width_out}).zero_();
// resize temporary columns
columns =
at::zeros({channels * kernel_h * kernel_w, 1 * height_out * width_out},
input.type());
output = output.view({output.size(0), group, output.size(1) / group,
output.size(2), output.size(3)});
// 这里每次只处理一个batch,所以在classification任务上跑的就非常慢
for (int b = 0; b < batch; b++) {
modulated_deformable_im2col_cuda(
input[b], offset[b], mask[b], 1, channels, height, width, height_out,
width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
dilation_h, dilation_w, deformable_group, columns);
// divide into group
weight = weight.view({group, weight.size(0) / group, weight.size(1),
weight.size(2), weight.size(3)});
columns = columns.view({group, columns.size(0) / group, columns.size(1)});
for (int g = 0; g < group; g++) {
output[b][g] = output[b][g]
.flatten(1)
.addmm_(weight[g].flatten(1), columns[g])
.view_as(output[b][g]);
}
weight = weight.view({weight.size(0) * weight.size(1), weight.size(2),
weight.size(3), weight.size(4)});
columns =
columns.view({columns.size(0) * columns.size(1), columns.size(2)});
}
output = output.view({output.size(0), output.size(1) * output.size(2),
output.size(3), output.size(4)});
if (with_bias) {
output += bias.view({1, bias.size(0), 1, 1});
}
}
void modulated_deformable_im2col_cuda(
const at::Tensor data_im, const at::Tensor data_offset, const at::Tensor data_mask,
const int batch_size, const int channels, const int height_im, const int width_im,
const int height_col, const int width_col, const int kernel_h, const int kenerl_w,
const int pad_h, const int pad_w, const int stride_h, const int stride_w,
const int dilation_h, const int dilation_w,
const int deformable_group, at::Tensor data_col)
{
// num_axes should be smaller than block size
// 很简单就能看出和传统的deformable convolution不是同一个人写的
const int channel_per_deformable_group = channels / deformable_group;
const int num_kernels = channels * batch_size * height_col * width_col;
AT_DISPATCH_FLOATING_TYPES_AND_HALF(
data_im.type(), "modulated_deformable_im2col_gpu", ([&] {
const scalar_t *data_im_ = data_im.data<scalar_t>();
const scalar_t *data_offset_ = data_offset.data<scalar_t>();
const scalar_t *data_mask_ = data_mask.data<scalar_t>();
scalar_t *data_col_ = data_col.data<scalar_t>();
modulated_deformable_im2col_gpu_kernel<<<GET_BLOCKS(num_kernels), CUDA_NUM_THREADS>>>(
num_kernels, data_im_, data_offset_, data_mask_, height_im, width_im, kernel_h, kenerl_w,
pad_h, pad_w, stride_h, stride_w, dilation_h, dilation_w, channel_per_deformable_group,
batch_size, channels, deformable_group, height_col, width_col, data_col_);
}));
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess)
{
printf("error in modulated_deformable_im2col_cuda: %s\n", cudaGetErrorString(err));
}
}
template <typename scalar_t>
__global__ void modulated_deformable_im2col_gpu_kernel(const int n,
const scalar_t *data_im, const scalar_t *data_offset, const scalar_t *data_mask,
const int height, const int width, const int kernel_h, const int kernel_w,
const int pad_h, const int pad_w,
const int stride_h, const int stride_w,
const int dilation_h, const int dilation_w,
const int channel_per_deformable_group,
const int batch_size, const int num_channels, const int deformable_group,
const int height_col, const int width_col,
scalar_t *data_col)
{
CUDA_KERNEL_LOOP(index, n)
{
// index index of output matrix
const int w_col = index % width_col;
const int h_col = (index / width_col) % height_col;
const int b_col = (index / width_col / height_col) % batch_size;
const int c_im = (index / width_col / height_col) / batch_size;
const int c_col = c_im * kernel_h * kernel_w;
// compute deformable group index
const int deformable_group_index = c_im / channel_per_deformable_group;
const int h_in = h_col * stride_h - pad_h;
const int w_in = w_col * stride_w - pad_w;
scalar_t *data_col_ptr = data_col + ((c_col * batch_size + b_col) * height_col + h_col) * width_col + w_col;
//const float* data_im_ptr = data_im + ((b_col * num_channels + c_im) * height + h_in) * width + w_in;
const scalar_t *data_im_ptr = data_im + (b_col * num_channels + c_im) * height * width;
const scalar_t *data_offset_ptr = data_offset + (b_col * deformable_group + deformable_group_index) * 2 * kernel_h * kernel_w * height_col * width_col;
const scalar_t *data_mask_ptr = data_mask + (b_col * deformable_group + deformable_group_index) * kernel_h * kernel_w * height_col * width_col;
for (int i = 0; i < kernel_h; ++i)
{
for (int j = 0; j < kernel_w; ++j)
{
const int data_offset_h_ptr = ((2 * (i * kernel_w + j)) * height_col + h_col) * width_col + w_col;
const int data_offset_w_ptr = ((2 * (i * kernel_w + j) + 1) * height_col + h_col) * width_col + w_col;
const int data_mask_hw_ptr = ((i * kernel_w + j) * height_col + h_col) * width_col + w_col;
const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr];
const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr];
const scalar_t mask = data_mask_ptr[data_mask_hw_ptr];
scalar_t val = static_cast<scalar_t>(0);
const scalar_t h_im = h_in + i * dilation_h + offset_h;
const scalar_t w_im = w_in + j * dilation_w + offset_w;
//if (h_im >= 0 && w_im >= 0 && h_im < height && w_im < width) {
if (h_im > -1 && w_im > -1 && h_im < height && w_im < width)
{
// 实际上这个双线性插值和原始的没有任何区别
val = dmcn_im2col_bilinear(data_im_ptr, width, height, width, h_im, w_im);
}
*data_col_ptr = val * mask;
data_col_ptr += batch_size * height_col * width_col;
//data_col_ptr += height_col * width_col;
}
}
}
}
可以发现,基本就没有什么新的东西。所以还是那句话掌握好了基础之后,再进行拓展就非常容易了。
接下来再来看看反向传播。这里的写法是把所有的梯度放在一起计算了。
void modulated_deform_conv_cuda_backward(
at::Tensor input, at::Tensor weight, at::Tensor bias, at::Tensor ones,
at::Tensor offset, at::Tensor mask, at::Tensor columns,
at::Tensor grad_input, at::Tensor grad_weight, at::Tensor grad_bias,
at::Tensor grad_offset, at::Tensor grad_mask, at::Tensor grad_output,
int kernel_h, int kernel_w, int stride_h, int stride_w, int pad_h,
int pad_w, int dilation_h, int dilation_w, int group, int deformable_group,
const bool with_bias) {
AT_CHECK(input.is_contiguous(), "input tensor has to be contiguous");
AT_CHECK(weight.is_contiguous(), "weight tensor has to be contiguous");
const int batch = input.size(0);
const int channels = input.size(1);
const int height = input.size(2);
const int width = input.size(3);
const int channels_kernel = weight.size(1);
const int kernel_h_ = weight.size(2);
const int kernel_w_ = weight.size(3);
if (kernel_h_ != kernel_h || kernel_w_ != kernel_w)
AT_ERROR("Input shape and kernel shape wont match: (%d x %d vs %d x %d).",
kernel_h_, kernel_w, kernel_h_, kernel_w_);
if (channels != channels_kernel * group)
AT_ERROR("Input shape and kernel channels wont match: (%d vs %d).",
channels, channels_kernel * group);
const int height_out =
(height + 2 * pad_h - (dilation_h * (kernel_h - 1) + 1)) / stride_h + 1;
const int width_out =
(width + 2 * pad_w - (dilation_w * (kernel_w - 1) + 1)) / stride_w + 1;
if (ones.ndimension() != 2 ||
ones.size(0) * ones.size(1) < height_out * width_out) {
// Resize plane and fill with ones...
ones = at::ones({height_out, width_out}, input.type());
}
grad_input = grad_input.view({batch, channels, height, width});
columns = at::zeros({channels * kernel_h * kernel_w, height_out * width_out},
input.type());
grad_output =
grad_output.view({grad_output.size(0), group, grad_output.size(1) / group,
grad_output.size(2), grad_output.size(3)});
for (int b = 0; b < batch; b++) {
// divide int group
columns = columns.view({group, columns.size(0) / group, columns.size(1)});
weight = weight.view({group, weight.size(0) / group, weight.size(1),
weight.size(2), weight.size(3)});
for (int g = 0; g < group; g++) {
columns[g].addmm_(weight[g].flatten(1).transpose(0, 1),
grad_output[b][g].flatten(1), 0.0f, 1.0f);
}
columns =
columns.view({columns.size(0) * columns.size(1), columns.size(2)});
weight = weight.view({weight.size(0) * weight.size(1), weight.size(2),
weight.size(3), weight.size(4)});
// gradient w.r.t. input coordinate data
modulated_deformable_col2im_coord_cuda(
columns, input[b], offset[b], mask[b], 1, channels, height, width,
height_out, width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h,
stride_w, dilation_h, dilation_w, deformable_group, grad_offset[b],
grad_mask[b]);
// gradient w.r.t. input data
modulated_deformable_col2im_cuda(
columns, offset[b], mask[b], 1, channels, height, width, height_out,
width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
dilation_h, dilation_w, deformable_group, grad_input[b]);
// gradient w.r.t. weight, dWeight should accumulate across the batch and
// group
modulated_deformable_im2col_cuda(
input[b], offset[b], mask[b], 1, channels, height, width, height_out,
width_out, kernel_h, kernel_w, pad_h, pad_w, stride_h, stride_w,
dilation_h, dilation_w, deformable_group, columns);
columns = columns.view({group, columns.size(0) / group, columns.size(1)});
grad_weight = grad_weight.view({group, grad_weight.size(0) / group,
grad_weight.size(1), grad_weight.size(2),
grad_weight.size(3)});
if (with_bias)
grad_bias = grad_bias.view({group, grad_bias.size(0) / group});
for (int g = 0; g < group; g++) {
grad_weight[g] =
grad_weight[g]
.flatten(1)
.addmm_(grad_output[b][g].flatten(1), columns[g].transpose(0, 1))
.view_as(grad_weight[g]);
if (with_bias) {
grad_bias[g] =
grad_bias[g]
.view({-1, 1})
.addmm_(grad_output[b][g].flatten(1), ones.view({-1, 1}))
.view(-1);
}
}
columns =
columns.view({columns.size(0) * columns.size(1), columns.size(2)});
grad_weight = grad_weight.view({grad_weight.size(0) * grad_weight.size(1),
grad_weight.size(2), grad_weight.size(3),
grad_weight.size(4)});
if (with_bias)
grad_bias = grad_bias.view({grad_bias.size(0) * grad_bias.size(1)});
}
grad_output = grad_output.view({grad_output.size(0) * grad_output.size(1),
grad_output.size(2), grad_output.size(3),
grad_output.size(4)});
}
可以看到基本上没有太大的差别,唯一的区别就在于这里的modulated_deformable_col2im_coord_cuda
函数同时计算出了相对于offset和mask的梯度,但是区别也不是很大,为了完整,还是简单的在这里放一下吧。
template <typename scalar_t>
__global__ void modulated_deformable_col2im_coord_gpu_kernel(const int n,
const scalar_t *data_col, const scalar_t *data_im,
const scalar_t *data_offset, const scalar_t *data_mask,
const int channels, const int height, const int width,
const int kernel_h, const int kernel_w,
const int pad_h, const int pad_w,
const int stride_h, const int stride_w,
const int dilation_h, const int dilation_w,
const int channel_per_deformable_group,
const int batch_size, const int offset_channels, const int deformable_group,
const int height_col, const int width_col,
scalar_t *grad_offset, scalar_t *grad_mask)
{
CUDA_KERNEL_LOOP(index, n)
{
scalar_t val = 0, mval = 0;
int w = index % width_col;
int h = (index / width_col) % height_col;
int c = (index / width_col / height_col) % offset_channels;
int b = (index / width_col / height_col) / offset_channels;
// compute the start and end of the output
const int deformable_group_index = c / (2 * kernel_h * kernel_w);
const int col_step = kernel_h * kernel_w;
int cnt = 0;
const scalar_t *data_col_ptr = data_col + deformable_group_index * channel_per_deformable_group * batch_size * width_col * height_col;
const scalar_t *data_im_ptr = data_im + (b * deformable_group + deformable_group_index) * channel_per_deformable_group / kernel_h / kernel_w * height * width;
const scalar_t *data_offset_ptr = data_offset + (b * deformable_group + deformable_group_index) * 2 * kernel_h * kernel_w * height_col * width_col;
const scalar_t *data_mask_ptr = data_mask + (b * deformable_group + deformable_group_index) * kernel_h * kernel_w * height_col * width_col;
const int offset_c = c - deformable_group_index * 2 * kernel_h * kernel_w;
for (int col_c = (offset_c / 2); col_c < channel_per_deformable_group; col_c += col_step)
{
const int col_pos = (((col_c * batch_size + b) * height_col) + h) * width_col + w;
const int bp_dir = offset_c % 2;
int j = (col_pos / width_col / height_col / batch_size) % kernel_w;
int i = (col_pos / width_col / height_col / batch_size / kernel_w) % kernel_h;
int w_out = col_pos % width_col;
int h_out = (col_pos / width_col) % height_col;
int w_in = w_out * stride_w - pad_w;
int h_in = h_out * stride_h - pad_h;
const int data_offset_h_ptr = (((2 * (i * kernel_w + j)) * height_col + h_out) * width_col + w_out);
const int data_offset_w_ptr = (((2 * (i * kernel_w + j) + 1) * height_col + h_out) * width_col + w_out);
const int data_mask_hw_ptr = (((i * kernel_w + j) * height_col + h_out) * width_col + w_out);
const scalar_t offset_h = data_offset_ptr[data_offset_h_ptr];
const scalar_t offset_w = data_offset_ptr[data_offset_w_ptr];
const scalar_t mask = data_mask_ptr[data_mask_hw_ptr];
scalar_t inv_h = h_in + i * dilation_h + offset_h;
scalar_t inv_w = w_in + j * dilation_w + offset_w;
if (inv_h <= -1 || inv_w <= -1 || inv_h >= height || inv_w >= width)
{
inv_h = inv_w = -2;
}
else
{
mval += data_col_ptr[col_pos] * dmcn_im2col_bilinear(data_im_ptr + cnt * height * width, width, height, width, inv_h, inv_w);
}
const scalar_t weight = dmcn_get_coordinate_weight(
inv_h, inv_w,
height, width, data_im_ptr + cnt * height * width, width, bp_dir);
val += weight * data_col_ptr[col_pos] * mask;
cnt += 1;
}
// KERNEL_ASSIGN(grad_offset[index], offset_req, val);
grad_offset[index] = val;
if (offset_c % 2 == 0)
// KERNEL_ASSIGN(grad_mask[(((b * deformable_group + deformable_group_index) * kernel_h * kernel_w + offset_c / 2) * height_col + h) * width_col + w], mask_req, mval);
grad_mask[(((b * deformable_group + deformable_group_index) * kernel_h * kernel_w + offset_c / 2) * height_col + h) * width_col + w] = mval;
}
}
这样我们就完整的掌握了deformable convolution的各种姿势。