Flink总结-Windows窗口

Windows是处理无穷无尽的流计算的核心。

stream
       .keyBy(...)               <-  keyed versus non-keyed windows
       .window(...)              <-  required: "assigner"
      [.trigger(...)]            <-  optional: "trigger" (else default trigger)
      [.evictor(...)]            <-  optional: "evictor" (else no evictor)
      [.allowedLateness(...)]    <-  optional: "lateness" (else zero)
      [.sideOutputLateData(...)] <-  optional: "output tag" (else no side output for late data)
       .reduce/aggregate/fold/apply()      <-  required: "function"
      [.getSideOutput(...)]      <-  optional: "output tag"

Non-Keyed Windows

stream
       .windowAll(...)           <-  required: "assigner"
      [.trigger(...)]            <-  optional: "trigger" (else default trigger)
      [.evictor(...)]            <-  optional: "evictor" (else no evictor)
      [.allowedLateness(...)]    <-  optional: "lateness" (else zero)
      [.sideOutputLateData(...)] <-  optional: "output tag" (else no side output for late data)
       .reduce/aggregate/fold/apply()      <-  required: "function"
      [.getSideOutput(...)]      <-  optional: "output tag"

方括号[]中的是可选项。窗口相关的函数使的flink允许你自有定义的。

Window Lifecycle

概括来说 ,当第一个属于这个窗口的元素到达窗口时窗口就被建立了,当时间(event时间或者processing时间)超过了(窗口结束时间+允许的最大延迟时间)窗口就会完整的移除 。Flink只保证会移除基于时间的窗口,比如 global window(参考Widow Assigners)。比如,5分钟为为周期基于事件时间的不重叠窗口(tumbling翻滚窗口)策略以及允许最小1分钟延迟。如果它的时间是Flink窗口时间在12:00和12:05之间,第一个消息到来的时候timestamp刚好落在这个区间,当水位线到达12:06的时候,这个窗口将会移除。

另外,每个窗口可以有一个Trigger(参考Trigger)和一个function(ProcessWindowFunction,ReduceFunction,AggregateFunction or FoldFunction)(参考Window Function)。Function有一个计算窗口内容的方法applied,Trigger可以指定一个condition条件在什么时候可以确定function运行applied方法。一个Trigger的策略有点类似“当窗口中的元素个数大于4个”或者“当水位线超过了窗口的结束点”。一个trigger也可以决定清洗一个窗口的内容在开始创建和结束的任意时间内。清洗只会关联window里面的元素,不会关联window元数据。这就意味着,新数据可以持续添加到窗口中。

除了以上,你可以指定Evictor (参考Evictor章节),它可以清除窗口内的数据在triger发生之后并且function applied发生的前面或者后面。

Keyed vs Non-Keyed Windows

第一件事需要明确的是你的stream需要keyed或者不需要。这个必须要窗口定义前确定。使用keyBy(...)将会把你的无尽的stream切割成逻辑的keyed stream。比如 keyBy(...)没有被调用,你的stream将不会keyed。

在已经keyed stream中,你写进来的事件任意属性attribute可以使用key。由于使用了keyed stream可以允许你的windowd 计算在并行的多任务的模式下运行,每一个逻辑的keyed stream可以相互独立的运行而相互没有影响。所有具有相同key的元素会被发射到相同的并行任务上执行。

如果在non-keyed streams中,你原有的stream不会分割成不同的逻辑stream并且所有的window逻辑只会执行在一个单独的任务上使用并发度为1。(也就说所有的数据会汇总到一个task上执行)
PS:最大并行度=container个数 * 每个container上最大slot数

Window Assigners

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,294评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,493评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,790评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,595评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,718评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,906评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,053评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,797评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,250评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,570评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,711评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,388评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,018评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,796评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,023评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,461评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,595评论 2 350

推荐阅读更多精彩内容