Spark之CheckPoint

Check Point

sparkContext.setCheckpointDir()

  • spark的checkpoint目录在集群模式下,必须是 hdfs path。因为在集群模式下,实际上 checkpointed RDD 是从executor machines 的 check point files 里面加载而来。

RDD CheckPoint

  • 实际上是利用 hdfs 的冗余来实现高可用。
  • 文件rdd-x保持的是 该rdd 的 信息。
  • 如果 rdd1.checkpoint(), 那么 后面依赖 rdd1的 rdd2 在计算时加载 rdd1实际上是从 checkpoint产生的eliableCheckpointRDD而来,(而不是从 rdd0->rdd1重新计算)。
  • 如果 rdd1.persist()并且 checkpoint 了,会优先加载 cache 里面的,然后是 checkpoint 里面的。

Streaming CheckPoint

Streaming里面的 checkpoint 又有其特殊的重要性。除存储某个 DStream 的数据外,还存储了环境相关信息。数据的 checkpoint 的目的同上,为了切断过长的依赖,使后面的操作的依赖更可口。而 metadata 的 checkpoint 是为了更好的恢复 driver。
Spark Streaming 会 checkpoint 两种类型的数据。

  • Metadata(元数据) checkpointing - 保存定义了 Streaming 计算逻辑至类似 HDFS 的支持容错的存储系统。用来恢复 driver,元数据包括:
    配置 - 用于创建该 streaming application 的所有配置
    DStream 操作 - DStream 一些列的操作
    未完成的 batches - 那些提交了 job 但尚未执行或未完成的 batches
  • Data checkpointing - 保存已生成的RDDs至可靠的存储。这在某些 stateful 转换中是需要的,在这种转换中,生成 RDD 需要依赖前面的 batches,会导致依赖链随着时间而变长。为了避免这种没有尽头的变长,要定期将中间生成的 RDDs 保存到可靠存储来切断依赖链

什么时候需要启用 checkpoint?

  • 有重要的过长的计算依赖

  • 用了一些全局的变量,比如stateful,broadcast 等

  • 希望从application从 driver 中恢复,注意需要重写 functionToCreateContext
    http://www.jianshu.com/p/00b591c5f623

  • 随着 streaming application 的持续运行,checkpoint 数据占用的存储空间会不断变大。因此,需要小心设置checkpoint 的时间间隔。设置得越小,checkpoint 次数会越多,占用空间会越大;如果设置越大,会导致恢复时丢失的数据和进度越多。一般推荐设置为 batch duration 的5~10倍

checkpoint.jpg

注意:类 Checkpoint 对象序列化后的数据,在 Spark Streaming application 重新编译后,再去反序列化 checkpoint 数据就会失败。这个时候就必须新建 StreamingContext。解决方案:对于重要的数据,自行维护,比如 kafka 的offset。
TODO check: offset checkpoint metadata or hdfs 存 or
zookeeper存 比较。

zero data loss 保证

Write Ahead Log+ reliable receivers(收到数据并且 replicate 之后向 source 确认)
多大程度上保证 zero data loss,跟源本身的实现机制,receiver 的实现也有关系

streaming-failure.png

在 deploy 上 checkpoint 也有一些依赖

具体参考:
http://spark.apache.org/docs/latest/streaming-programming-guide.html#deploying-applications

Persistent vs CheckPoint

Spark 在生产环境下经常会面临transformation的RDD非常多(例如一个Job中包含1万个RDD)或者具体transformation的RDD本身计算特别复杂或者耗时(例如计算时长超过1个小时),这个时候就要考虑对计算结果数据的持久化。如果采用persist把数据放在内存中,虽然是快速的,但是也是最不可靠的;如果把数据放在磁盘上,也不是完全可靠的!例如磁盘会损坏,系统管理员可能清空磁盘。持久化的方向可以是 persistent 或者 checkpoint。 当两者目的又有所不同。

  1. cache/persistent 可以说一方面是为了提速,另一方面是为了当某一重要步骤过长,后面的依赖出错(可能是逻辑错误)情况下,可以无需从头算起。

  2. checkpoint:则更多的是为了高可用。其核心另的还是 hdfs 的 replicaton.其情形是集群总某个点的硬件设备坏掉,例如 persistent 中某个盘坏了,整个应用仍然是可用的。Checkpoint的产生就是为了相对而言更加可靠的持久化数据,在Checkpoint的时候可以指定把数据放在本地,并且是多副本的方式,但是在生产环境下是放在HDFS上,这就天然的借助了HDFS高容错、高可靠的特征来完成了最大化的可靠的持久化数据的方式;

  3. Checkpoint是为了最大程度保证绝对可靠的复用RDD计算数据的Spark高级功能,通过checkpoint我们通常把数据持久化到HDFS来保证数据最大程度的安全性;

  4. Checkpoint就是针对整个RDD计算链条中特别需要数据持久化的环节(后面会反复使用当前环节的RDD)开始基于HDFS等的数据持久化复用策略,通过对RDD启动checkpoint机制来实现容错和高可用;

加入进行一个1万个步骤,在9000个步骤的时候persist,数据还是有可能丢失的,但是如果checkpoint,数据丢失的概率几乎为0。

理解spark streaming 情形下的数据丢失,对 checkpoint 非常重要
http://spark.apache.org/docs/latest/streaming-programming-guide.html#fault-tolerance-semantics

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,039评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,223评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,916评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,009评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,030评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,011评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,934评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,754评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,202评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,433评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,590评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,321评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,917评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,568评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,738评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,583评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,482评论 2 352

推荐阅读更多精彩内容