matplotlib数据可视化

  • 导入绘图库
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import os
  • 读取数据(数据来源是一个EXCLE表格,这里演示的是如何将数据可视化出来)
os.chdir(r'E:\jupyter\数据挖掘\数据与代码')
df = pd.read_csv('air_data.csv',na_values= '--') 

1.折线图

  • plt.plot(x,y,ls=,lw=,c=,marker=,markersize=,markeredgecolor=,markerfacecolor, label=)

  • x: x轴上的数值

  • y: y轴上的数值

  • ls- -函数线条风格(='-' 实线, '--' 虚线 ,'-.' 点划线 ,':' 实点线)

  • lw: 线条宽度

  • c: 颜色

  • marker: 线条上点的形状, 常用为'o',即圆点形状

  • markersize: 线条上点的形状

  • markeredgecolor: 点的边框色

  • markerfacecolor: 点的填充色

# 绘制观察窗口内的飞行次数和观测窗口内的总飞行里程数
# 支持中文显示
plt.rcParams['font.sans-serif']=['SimHei']# 字体
plt.rcParams['axes.unicode_minus']=False
x=np.linspace(0,10,100)
y=np.sin(x)
plt.plot(x,y,ls='-',lw=2,marker='o',markersize=5,c='red',markeredgecolor='black',markerfacecolor='lightskyblue')
plt.show()
image.png

2.直方图

  • hist:数据
  • bins:组距
  • color:填充色
  • edgecolor:边框色
  • density:是否绘制成概率密度形式
  • xlabel:横坐标
  • ylabel:纵坐标
  • labelpad/pad:离坐标轴的距离
# 绘制年龄的分布情况
plt.hist(x=df['AGE'],bins=30,color='r',edgecolor='black',density=True) # density=True 代表是否绘制概率密度形式
plt.xlabel('客户年龄',fontsize=15,labelpad=20)
plt.ylabel('频数',fontsize=15,labelpad=20)
plt.title('年龄分布图',fontsize=15,pad=20)
plt.show()
image.png

3.箱线图

  • plt.boxplot(x,notch,sym,vert,whis,position,widths,patch_artist,meanline,showmeans, boxprops,labels,flierprops)

  • x: 数据

  • 宽度:宽度

  • patch_artist: 是否填充箱体颜色

  • meanline:是否显示均值

  • showmeans: 是否显示均值

  • meanprops;设置均值属性,如点的大小,颜色等

  • medianprops:设置中位数的属性,如线的类型,大小等

  • showfliers: 是否表示有异常值

  • boxprops:设置箱体的属性,边框色和填充色

  • cappops: 设置箱线顶端和末端线条的属性,如颜色,粗细等

age=df[df['AGE'].notnull()]['AGE'] # 剔除年龄的空值
plt.boxplot(x=age,patch_artist=True,boxprops={'color':'red'})
plt.show()
image.png

4.柱状图

# 将字符型数据转换date格式
df['FFP_DATE']=pd.to_datetime(df['FFP_DATE'],format='%Y/%m/%d',errors='coerce') # errors 避免报错
data=df['FFP_DATE'].dt.year.value_counts()
x_data=data.index
y_data=data.values
plt.bar(x=x_data,height=y_data,align='center',color='y',tick_label=x_data)
plt.title('不同年份的会员数量',pad=5)
plt.show()
image.png

5.饼图

  • autopct:设置百分比的格式
data=df['GENDER'].value_counts()
# 绘制饼图
plt.pie(x=data.values,labels=data.index,colors=['lightskyblue','lightcoral'],autopct='%.1f%%')
plt.show()
image.png

6.散点图

# 飞行次数与总飞行公里数的关系
plt.scatter(x=df['FLIGHT_COUNT'],y=df['SEG_KM_SUM'],color='steelblue',marker='o',s=100)
plt.title('飞行次数与总飞行公里数的关系')
plt.show()
image.png
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,039评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,426评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,417评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,868评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,892评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,692评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,416评论 3 419
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,326评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,782评论 1 316
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,957评论 3 337
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,102评论 1 350
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,790评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,442评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,996评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,113评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,332评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,044评论 2 355

推荐阅读更多精彩内容