盘点季 | 空间转录组工具合辑(下):聚类

盘点季 | 空间转录组分析工具合辑(上):去卷积

新兴的空间转录组(ST)领域的技术发展开辟了一个未经探索的领域,将转录信息置于空间环境中。聚类通常是分析这类数据的核心组成部分。

ClusterMap

ClusterMap是一个无监督和无注释的计算工具,其基于两个关键的生物学现象:首先,细胞内RNA分子的密度高于细胞外;其次,不同基因编码的细胞RNA在不同的亚细胞位置、细胞类型和组织区域富集。因此,开发团队推断,通过对RNA的物理密度和基因身份进行联合聚类,可以直接从原位转录组数据中确定有生物学意义的模式和结构。随后,根据基因身份和空间尺度对空间聚类进行解析,以表示亚细胞定位、细胞分割和区域识别。

性能评估:与此前的方法相比,ClusterMap在模拟数据集和生物数据集中均表现出稳定的高性能。此外,ClusterMap广泛适用于各种实验方法,包括但不限于STARmap、MERFISH、ISS和osmFISH。实验结果表明ClusterMap从不同组织样本的原位转录组数据中准确地创建了RNA注释的亚细胞和细胞图谱,这些组织样本具有不同的RNA定位、细胞密度、形态和连接。

工具获取:

https://github.com/wanglab-broad/ClusterMap  

https:// github.com/LiuLab-Bioelectronics-Harvard/ClusterMap


CoSTA

CoSTA是一种通过卷积神经网络(ConvNet)聚类学习基因表达矩阵之间空间相似性的新方法。CoSTA方法使用ConvNet聚类结构,重复(1)通过ConvNet生成特征,(2)通过GMM聚类生成软分配,以及(3)使用软分配来更新ConvNet。一旦完成训练,只保留训练好的ConvNet用于特征提取。由于ConvNet主要由卷积层组成,ConvNet提取的每个基因的最终向量应该是一个空间表示。利用这个空间表示可以在一个空间转录组数据集中量化任何两个基因之间的关系,利用UMAP将这个数据集中的所有SE基因可视化,并通过常见的聚类算法分配模式。

性能评估:通过分析模拟和此前发表的空间转录组数据,研究团队证明CoSTA学习基因之间的空间关系的方式是强调更广泛的空间模式而不是pixels级的相关性。CoSTA为每对基因之间的表达模式相似性提供了一个定量的衡量标准,而不仅仅是将基因归类。与其他方法相比,CoSTA识别的范围更窄,但在生物学上是显著相关的基因集。CoSTA可以成功地实现从计算机视觉的深度学习思想来推断空间基因表达关系,其可以应用于任何为每个基因输出基因表达信息的图像类型矩阵的技术,不仅包括性能测试中探讨的Slide-seq和MERFISH,还包括STARmap、10×Visium和HDST。

工具获取:

https://doi.org/10.5281/zenodo.3948711


BayesSpace

BayesSpace是一种完全贝叶斯统计方法,它使用来自空间邻域的信息来增强空间转录组数据的分辨率并进行聚类分析。BayesSpace是一种基于空间转录组模型的聚类方法,通过对基因表达矩阵的低维表示进行建模并通过空间先验鼓励相邻点属于同一簇来实现空间聚类。与以前的方法相比,BayesSpace允许对聚类结构和错误项进行更灵活的规范。BayeSpace通过广泛使用的Bioconductor SingleCellExperiment数据结构将预处理数据作为输入,无缝集成到空间转录组分析工作流中,输出同样存储在SingleCellExperiment对象中,该对象可用于下游分析。这些方法都实现为一个R包,可以在Bioconductor上公开访问(http://www.bioconductor.org/packages/release/bioc/html/BayesSpace.html)。

性能评估:研究人员将BayesSpace与现有的空间和非空间聚类方法进行基准测试,结果表明其改善了从大脑、黑色素瘤、浸润性导管癌和卵巢腺癌样本中识别不同的组织内转录谱的能力。通过使用免疫组化和一个由scRNA-seq数据构建的模拟数据集,研究人员发现解析了在原始分辨率下无法检测到的组织结构,并识别了组织学分析无法识别的转录异质性。这些结果说明了BayesSpace在促进从空间转录组数据中发现生物学洞见方面的实用性。

工具获取:

http://www.bioconductor.org/packages/release/bioc/html/BayesSpace.html

https://github.com/edward130603/BayesSpace


FICT

FICT是一种在分配细胞类型时结合了表达和邻域信息的新方法。FICT最大化了联合概率似然函数,该函数考虑了每个细胞中基因的表达和细胞类型的联合多变量空间分布。其首先定义了一个生成混合模型:每个细胞根据其邻域分配一个细胞类型,然后从细胞类型的特定分布中提取基因表达水平的降维表示。接下来通过最大化基因表达和细胞位置的联合可能性来学习这个生成模型的参数。然后通过这个生成模型的后验分布推断出细胞类型,并给出基因表达水平和细胞位置。

性能评估:使用模拟数据FICT可以正确地确定每个细胞的表达和提供相邻细胞类型分布信息的参数,改进了仅依靠表达水平的生成和鉴别方法,以及没有考虑到每个细胞完整邻域的方法。对于真实的数据,研究表明FICT对不同动物的相同组织所学到的模型有很好的一致性,它确实可以利用空间信息来纠正表达值中的噪声所造成的错误,而且即使在表达谱相似的情况下,它也可以用来识别空间上不同的细胞亚型。

工具获取:

https://github.com/haotianteng/FICT


SpatialCPie

SpatialCPie是一个易于使用的R包,可以让用户直观地了解ST数据中的“簇”是如何相互关联的,以及二维ST阵列上的每个区域与每个“簇”的关联程度。SpatialCPie被设计成R工作流的一部分,使用户可以高度灵活地定制和快速迭代他们的分析。数据在多种分辨率下进行聚类--即采用不同数量的聚类或超参数设置--从而避免了为分析预先指定单一的超参数集,用户可以自由定义使用哪种聚类算法。结果以两种方式可视化:用聚类图显示不同分辨率之间的聚类重叠情况;用二维数组图,其中每个点用饼图表示,表示其与不同聚类中心点的相似度。SpatialCPie的用户界面是用Shiny实现的。该界面主要由两部分组成:Cluster graph和Array plot。

性能评估:SpatialCPie可以用来分析任何具有空间分布的计数数据的数据集,开发团队展示了其在三个公开的ST数据集(发育中的人类心脏、原位乳腺癌和黑色素瘤)上的实用性,在此之前所有数据均使用Seurat进行了归一化。

工具获取:

https://github.com/jbergenstrahle/SpatialCPie


首发公号:国家基因库大数据平台

参考文献

[1] He, Y., Tang, X., Huang, J. et al. ClusterMap for multi-scale clustering analysis of spatial gene expression.Nat Commun 12, 5909 (2021). 

[2] Xu, Y., McCord, R.P. CoSTA: unsupervised convolutional neural network learning for spatial transcriptomics analysis. BMC Bioinformatics 22, 397 (2021). 

[3] Zhao, E., Stone, M.R., Ren, X. et al. Spatial transcriptomics at subspot resolution with BayesSpace. Nat Biotechnol (2021). 

[4] Teng H, Yuan Y, Bar-Joseph Z. Clustering spatial transcriptomics data[J]. Bioinformatics, 2021.

[5] Bergenstråhle J, Bergenstråhle L, Lundeberg J. SpatialCPie: an R/Bioconductor package for spatial transcriptomics cluster evaluation[J]. BMC bioinformatics, 2020, 21: 1-7.

图片均来源于参考文献,如有侵权请联系删除。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 227,882评论 6 531
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 98,208评论 3 414
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 175,746评论 0 373
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 62,666评论 1 309
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 71,477评论 6 407
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 54,960评论 1 321
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 43,047评论 3 440
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 42,200评论 0 288
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 48,726评论 1 333
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 40,617评论 3 354
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 42,807评论 1 369
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 38,327评论 5 358
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 44,049评论 3 347
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 34,425评论 0 26
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 35,674评论 1 281
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 51,432评论 3 390
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 47,769评论 2 372

推荐阅读更多精彩内容