/* public domain proof-of-concept code by Solar Designer */
#define _XOPEN_SOURCE /* for crypt(3) */
#include <string.h>
#include <unistd.h>
#include "arch.h"
#include "params.h"
#include "formats.h"
#define FORMAT_LABEL "crypt"
#define FORMAT_NAME "generic crypt(3)"
#define ALGORITHM_NAME "?/" ARCH_BITS_STR
#define BENCHMARK_COMMENT ""
#define BENCHMARK_LENGTH 0
#define PLAINTEXT_LENGTH 72
#define BINARY_SIZE 128
#define SALT_SIZE BINARY_SIZE
#define MIN_KEYS_PER_CRYPT 1
#define MAX_KEYS_PER_CRYPT 1
static struct fmt_tests tests[] = {
{"CCNf8Sbh3HDfQ", "U*U*U*U*"},
{"CCX.K.MFy4Ois", "U*U***U"},
{"CC4rMpbg9AMZ.", "U*U***U*"},
{"XXxzOu6maQKqQ", "*U*U*U*U"},
{"SDbsugeBiC58A", ""},
{NULL}
};
static char saved_key[PLAINTEXT_LENGTH + 1];
static char saved_salt[SALT_SIZE];
static char *crypt_out;
static int valid(char *ciphertext)
{
#if 1
int l = strlen(ciphertext);
return l >= 13 && l < BINARY_SIZE;
#else
/* Poor load time, but more effective at rejecting bad/unsupported hashes */
char *r = crypt("", ciphertext);
int l = strlen(r);
return
!strncmp(r, ciphertext, 2) &&
l == strlen(ciphertext) &&
l >= 13 && l < BINARY_SIZE;
#endif
}
static void *binary(char *ciphertext)
{
static char out[BINARY_SIZE];
strncpy(out, ciphertext, sizeof(out)); /* NUL padding is required */
return out;
}
static void *salt(char *ciphertext)
{
static char out[SALT_SIZE];
int cut = sizeof(out);
#if 1
/* This piece is optional, but matching salts are not detected without it */
switch (strlen(ciphertext)) {
case 13:
case 24:
cut = 2;
break;
case 20:
if (ciphertext[0] == '_') cut = 9;
break;
case 34:
if (!strncmp(ciphertext, "$1$", 3)) {
char *p = strchr(ciphertext + 3, '$');
if (p) cut = p - ciphertext;
}
break;
case 59:
if (!strncmp(ciphertext, "$2$", 3)) cut = 28;
break;
case 60:
if (!strncmp(ciphertext, "$2a$", 4)) cut = 29;
break;
}
#endif
/* NUL padding is required */
memset(out, 0, sizeof(out));
memcpy(out, ciphertext, cut);
return out;
}
static int binary_hash_0(void *binary)
{
return ((unsigned char *)binary)[12] & 0xF;
}
static int binary_hash_1(void *binary)
{
return ((unsigned char *)binary)[12] & 0xFF;
}
static int binary_hash_2(void *binary)
{
return
(((unsigned char *)binary)[12] & 0xFF) |
((int)(((unsigned char *)binary)[11] & 0xF) << 8);
}
static int get_hash_0(int index)
{
return (unsigned char)crypt_out[12] & 0xF;
}
static int get_hash_1(int index)
{
return (unsigned char)crypt_out[12] & 0xFF;
}
static int get_hash_2(int index)
{
return
((unsigned char)crypt_out[12] & 0xFF) |
((int)((unsigned char)crypt_out[11] & 0xF) << 8);
}
static int salt_hash(void *salt)
{
int pos = strlen((char *)salt) - 2;
return
(((unsigned char *)salt)[pos] & 0xFF) |
((int)(((unsigned char *)salt)[pos + 1] & 3) << 8);
}
static void set_salt(void *salt)
{
strcpy(saved_salt, salt);
}
static void set_key(char *key, int index)
{
strcpy(saved_key, key);
}
static char *get_key(int index)
{
return saved_key;
}
static void crypt_all(int count)
{
crypt_out = crypt(saved_key, saved_salt);
}
static int cmp_all(void *binary, int count)
{
return !strcmp((char *)binary, crypt_out);
}
static int cmp_exact(char *source, int index)
{
return 1;
}
struct fmt_main fmt_crypt = {
{
FORMAT_LABEL,
FORMAT_NAME,
ALGORITHM_NAME,
BENCHMARK_COMMENT,
BENCHMARK_LENGTH,
PLAINTEXT_LENGTH,
BINARY_SIZE,
SALT_SIZE,
MIN_KEYS_PER_CRYPT,
MAX_KEYS_PER_CRYPT,
FMT_CASE | FMT_8_BIT,
tests
}, {
fmt_default_init,
valid,
fmt_default_split,
binary,
salt,
{
binary_hash_0,
binary_hash_1,
binary_hash_2
},
salt_hash,
set_salt,
set_key,
get_key,
fmt_default_clear_keys,
crypt_all,
{
get_hash_0,
get_hash_1,
get_hash_2
},
cmp_all,
cmp_all,
cmp_exact
}
};
修改Makefile中JOHN_OBJS_MINIMAL的依赖
unshadow.o \
unafs.o \
unique.o \
crypt_fmt.o
执行指令
make clean generic
执行John
sudo unshadow /etc/passwd /etc/shadow> shadowfile
./john shadowfile
执行结果
root@ubuntu:/home/user/Downloads/john-1.8.0# ./john shadowfile
Loaded 6 password hashes with 6 different salts (generic crypt(3) [?/64])
test (test)
aaa (aaa)
暴力破解密码,都需要一个足够强大的字典。
John the Ripper的默认密码字典为run目录下的password.lst。
而密码字典的构造就看自己收集信息的能力了。