使用自己的语料训练word2vec模型

一、 准备环境和语料:
  • 新闻20w+篇(格式:标题正文

【新闻可以自己从各大新闻网站爬取,也可以下载开源的新闻数据集,如

二、分词

先对新闻文本进行分词,使用的是结巴分词工具,将分词后的文本保存在seg201708.txt,以备后期使用。

安装jieba工具包:pip install jieba

# -*- coding: utf-8 -*-
import jieba
import io
# 加载自己的自己的金融词库
jieba.load_userdict("financialWords.txt")

def main():
    with io.open('news201708.txt','r',encoding='utf-8') as content:
        for line in content:
            seg_list = jieba.cut(line)
#           print '/'.join(seg_list)
            with io.open('seg201708.txt', 'a', encoding='utf-8') as output:
                output.write(' '.join(seg_list))
            
if __name__ == '__main__':
    main()
三、训练word2vec模型

使用python的gensim包进行训练。

安装gemsim包:pip install gemsim

from gensim.models import word2vec

def main():

    num_features = 300    # Word vector dimensionality
    min_word_count = 10   # Minimum word count
    num_workers = 16       # Number of threads to run in parallel
    context = 10          # Context window size
    downsampling = 1e-3   # Downsample setting for frequent words
    sentences = word2vec.Text8Corpus("seg201708.txt")

    model = word2vec.Word2Vec(sentences, workers=num_workers, \
            size=num_features, min_count = min_word_count, \
            window = context, sg = 1, sample = downsampling)
    model.init_sims(replace=True)
    # 保存模型,供日後使用
    model.save("model201708")
    
    # 可以在加载模型之后使用另外的句子来进一步训练模型
    # model = gensim.models.Word2Vec.load('/tmp/mymodel')
    # model.train(more_sentences)

if __name__ == "__main__":
    main()
  • 参数说明
  • sentences:可以是一个·ist,对于大语料集,建议使用BrownCorpus,Text8Corpus或ineSentence构建。
  • sg: 用于设置训练算法,默认为0,对应CBOW算法;sg=1则采用skip-gram算法。
  • size:是指特征向量的维度,默认为100。大的size需要更多的训练数据,但是效果会更好. 推荐值为几十到几百。
  • window:表示当前词与预测词在一个句子中的最大距离是多少
  • alpha: 是学习速率
  • seed:用于随机数发生器。与初始化词向量有关。
  • min_count: 可以对字典做截断. 词频少于min_count次数的单词会被丢弃掉, 默认值为5
  • max_vocab_size: 设置词向量构建期间的RAM限制。如果所有独立单词个数超过这个,则就消除掉其中最不频繁的一个。每一千万个单词需要大约1GB的RAM。设置成None则没有限制。
  • sample: 高频词汇的随机降采样的配置阈值,默认为1e-3,范围是(0,1e-5)
  • workers参数控制训练的并行数。
  • hs: 如果为1则会采用hierarchica·softmax技巧。如果设置为0(defau·t),则negative sampling会被使用。
  • negative: 如果>0,则会采用negativesamp·ing,用于设置多少个noise words
  • cbow_mean: 如果为0,则采用上下文词向量的和,如果为1(defau·t)则采用均值。只有使用CBOW的时候才起作用。
  • hashfxn: hash函数来初始化权重。默认使用python的hash函数
  • iter: 迭代次数,默认为5
  • trim_rule: 用于设置词汇表的整理规则,指定那些单词要留下,哪些要被删除。可以设置为None(min_count会被使用)或者一个接受()并返回RU·E_DISCARD,uti·s.RU·E_KEEP或者uti·s.RU·E_DEFAU·T的
  • sorted_vocab: 如果为1(defau·t),则在分配word index 的时候会先对单词基于频率降序排序。
  • batch_words:每一批的传递给线程的单词的数量,默认为10000
四、word2vec应用
model = Word2Vec.load('model201708')      #模型讀取方式
model.most_similar(positive=['woman', 'king'], negative=['man']) #根据给定的条件推断相似词
model.doesnt_match("breakfast cereal dinner lunch".split()) #寻找离群词
model.similarity('woman', 'man') #计算两个单词的相似度
model['computer'] #获取单词的词向量
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,254评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,875评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,682评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,896评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,015评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,152评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,208评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,962评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,388评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,700评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,867评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,551评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,186评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,901评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,689评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,757评论 2 351

推荐阅读更多精彩内容