[LeetCode] 84. Largest Rectangle in Histogram

</br>


Given n non-negative integers representing the histogram's bar height where the width of each bar is 1, find the area of largest rectangle in the histogram.


Above is a histogram where width of each bar is 1, given height = [2,1,5,6,2,3].


The largest rectangle is shown in the shaded area, which has area = 10 unit.

For example,

Given heights = [2,1,5,6,2,3],return 10.


Solution

We can coclude that, for any bar i, the maximum rectangle is of width r - l - 1 where r is the last coordinate of the bar to the right with height h[r] >= h[i] and l is the last coordinate of the bar to the left which height h[l] >= h[i].

Therefore, for any rectangle i, if we can locate its last coordinate to the right and to the left, then we can easily calculate the target area.

So the main problem is how to calculate these two boundary, and the trick is to efficiently iterate the arrays to find the target.

When we start from the utermost left and rigght side, we can actaully reuse the value from the last iteration and thus achieve O(n) complexity.

The code is shown as below.
Java

public class Solution {
    public int largestRectangleArea(int[] heights) {
        
    if (heights == null || heights.length == 0) {
        return 0;
    }
        
    int[] left = new int[heights.length]; 
    int[] right = new int[heights.length]; 
    
    left[0] = -1;
    right[heights.length - 1] = heights.length;

    //left side
    for (int i = 1; i < heights.length; i++) {
        int p = i - 1;
        while (p >= 0 && heights[p] >= heights[i]) {
            p = left[p];
        }
        left[i] = p;
    }
    //right side
    for (int i = heights.length - 2; i >= 0; i--) {
        int p = i + 1;
        while (p < heights.length && heights[p] >= heights[i]) {
            p = right[p];
        }
        right[i] = p;
    }

    int maxArea = 0;
    for (int i = 0; i < heights.length; i++) {
        maxArea = Math.max(maxArea, heights[i] * (right[i] - left[i] - 1));
    }
    return maxArea;
    }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
【社区内容提示】社区部分内容疑似由AI辅助生成,浏览时请结合常识与多方信息审慎甄别。
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

相关阅读更多精彩内容

友情链接更多精彩内容