1. 前言
Go语言传参既支持传值,也支持传引用。基础类型的传递比较清晰,本文记录下传递map和slice的原理。
2. 初始化和赋值
2.1 使用方法
map和slice类型都是通过make方法和new方法来初始化。使用make初始化时,会同时分配空间,使用new初始化时,不会分配空间,指向的是一个nil。
make方法的说明:map是不需要传入长度length的,slice可以接受两个长度参数,初始化的长度和容量。
// The make built-in function allocates and initializes an object of type
// slice, map, or chan (only). Like new, the first argument is a type, not a
// value. Unlike new, make's return type is the same as the type of its
// argument, not a pointer to it. The specification of the result depends on
// the type:
// Slice: The size specifies the length. The capacity of the slice is
// equal to its length. A second integer argument may be provided to
// specify a different capacity; it must be no smaller than the
// length. For example, make([]int, 0, 10) allocates an underlying array
// of size 10 and returns a slice of length 0 and capacity 10 that is
// backed by this underlying array.
// Map: An empty map is allocated with enough space to hold the
// specified number of elements. The size may be omitted, in which case
// a small starting size is allocated.
// Channel: The channel's buffer is initialized with the specified
// buffer capacity. If zero, or the size is omitted, the channel is
// unbuffered.
func make(t Type, size ...IntegerType) Type
new出来的map不能赋值:
package main
import "fmt"
func main() {
mapValue1 := make(map[int64]int64)
mapValue2 := new(map[int64]int64)
mapValue1[1] = 1
(*mapValue2)[2] = 2
fmt.Println(mapValue1)
fmt.Println(*mapValue2)
}
运行时会报错:panic: assignment to entry in nil map
new出来的slice可以赋值(append)操作:
package main
import "fmt"
func main() {
sliceValue1 := make([]int64, 0)
sliceValue2 := new([]int64)
sliceValue1 = append(sliceValue1, 100)
*sliceValue2 = append(*sliceValue2, 200)
fmt.Println(sliceValue1)
fmt.Println(*sliceValue2)
}
可以打印出信息。
2.2 内存分配
map初始化就是返回一个hmap的结构体地址(可以理解为一个指针,指向了这个分配的结构体),具体的字段如下,任何语言的数组(php)或者map(java)里面都涉及到复杂的hash,就不在此详述。make时就会返回一个hmap结构体指针。
map赋值时,需要先根据key找到那个对应的地址,然后对这个地址赋上对应的值。
// map的结构体
// A header for a Go map.
type hmap struct {
// Note: the format of the hmap is also encoded in cmd/compile/internal/gc/reflect.go.
// Make sure this stays in sync with the compiler's definition.
count int // # live cells == size of map. Must be first (used by len() builtin)
flags uint8
B uint8 // log_2 of # of buckets (can hold up to loadFactor * 2^B items)
noverflow uint16 // approximate number of overflow buckets; see incrnoverflow for details
hash0 uint32 // hash seed
buckets unsafe.Pointer // array of 2^B Buckets. may be nil if count==0.
oldbuckets unsafe.Pointer // previous bucket array of half the size, non-nil only when growing
nevacuate uintptr // progress counter for evacuation (buckets less than this have been evacuated)
extra *mapextra // optional fields
}
// make方法
func makemap_small() *hmap {
h := new(hmap)
h.hash0 = fastrand()
return h
}
// 赋值方法
func mapassign_fast64(t *maptype, h *hmap, key uint64) unsafe.Pointer {
}
slice初始化时会分配3*8=24bytes,分别保存着array,len,cap。array等于heap区返回的地址,在append时如果cap不够了,会自动增加cap。进行整个内存的copy,看起来效率会很低。
// slice结构体
type slice struct {
array unsafe.Pointer
len int
cap int
}
// 分配
func makeslice(et *_type, len, cap int) unsafe.Pointer {}
// 扩大slice的cap
func growslice(et *_type, old slice, cap int) slice {}
3. 参数传递
传递一个map变量时,实际上是传递了上面提到的分配hmap结构体的地址,可以理解为传递了引用。通过打印结果也可以反应这个机制。
package main
import "fmt"
func main() {
mapValue1 := make(map[int64]int64)
mapValue1[1] = 2
mapValue2 := mapValue1
mapValue2[3] = 4
fmt.Println(mapValue1)
fmt.Println(mapValue2)
}
// 打印信息
map[1:1 2:2]
map[1:1 2:2]
传递一个slice变量时,实际上是复制了24bytes,通过汇编代码和打印信息,都可以验证。
package main
import "fmt"
func main() {
sliceValue1 := make([]int64, 0, 10)
sliceValue1 = append(sliceValue1, 100)
sliceValue2 := sliceValue1
sliceValue2 = append(sliceValue2, 200)
fmt.Println(sliceValue1)
fmt.Println(sliceValue2)
}
// 打印信息
[100]
[100 200]
// 汇编代码
main.go:6 0x1099596 48890424 MOVQ AX, 0(SP)
main.go:6 0x109959a 48c744240800000000 MOVQ $0x0, 0x8(SP)
main.go:6 0x10995a3 48c74424100a000000 MOVQ $0xa, 0x10(SP)
main.go:6 0x10995ac e88f36faff CALL runtime.makeslice(SB)
main.go:6 0x10995b1 488b442418 MOVQ 0x18(SP), AX
main.go:6 0x10995b6 4889442450 MOVQ AX, 0x50(SP)
main.go:6 0x10995bb 48c744245800000000 MOVQ $0x0, 0x58(SP)
main.go:6 0x10995c4 48c74424600a000000 MOVQ $0xa, 0x60(SP)
main.go:7 0x10995cd eb00 JMP 0x10995cf
main.go:7 0x10995cf 48c70064000000 MOVQ $0x64, 0(AX)
main.go:7 0x10995d6 4889442450 MOVQ AX, 0x50(SP)
main.go:7 0x10995db 48c744245801000000 MOVQ $0x1, 0x58(SP)
main.go:7 0x10995e4 48c74424600a000000 MOVQ $0xa, 0x60(SP)
一个有趣的例子,可以加深slice传递的理解。sliceValue1和sliceValue2是两个不同的slice结构体,但是具体的值指向的地址是同一个空间,空间里面有2个值,100和200,但是sliceValue1的len为1,所以只会打印出100。sliceValue3等于&sliceValue1,此时sliceValue3只占用了8bytes,指向sliceValue1的地址,如果对sliceValue3进行append操作,sliceValue1结构体的len会发生变化,同时值空间指向的值也会发生变化,导致第二个值变成了300,从而影响了sliceValue2的值。
package main
import "fmt"
func main() {
sliceValue1 := make([]int64, 0, 10)
sliceValue1 = append(sliceValue1, 100)
sliceValue2 := sliceValue1
sliceValue2 = append(sliceValue2, 200)
sliceValue3 := &sliceValue1
*sliceValue3 = append(*sliceValue3, 300)
fmt.Println(sliceValue1)
fmt.Println(sliceValue2)
fmt.Println(sliceValue3)
}
// 打印信息
[100 300]
[100 300]
&[100 300]