主要的功能就是通过await()方法来阻塞线程,然后等待计数器减少到0了,再唤起那些等待的线程继续;即你想要某些线程等待另一些线程执行完再执行,就可以使用CountDownLatch。
等待线程执行await,等待直到同步状态state被被等待线程减为0,唤醒等待线程。
先来看看用法:
//三个线程阻塞直到主线程执行完
public void test1() {
final CountDownLatch latch = new CountDownLatch(1);
for (int i = 0; i < 3; i++) {
new Thread(() -> {
System.out.println(Thread.currentThread().getName() + " wait;");
try {
latch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println(Thread.currentThread().getName() + " start");
}).start();
}
try {
Thread.sleep(3000);
} catch (InterruptedException e) {
e.printStackTrace();
}
latch.countDown();
}
//主线程阻塞等待直到三个线程都执行完
public void test2() {
final CountDownLatch latch = new CountDownLatch(3);
for (int i = 0; i < 3; i++) {
new Thread(() -> {
System.out.println(Thread.currentThread().getName() + " start");
latch.countDown();
}).start();
}
try {
latch.await();
} catch (InterruptedException e) {
e.printStackTrace();
}
System.out.println("All end");
}
源码
构造函数:同步状态state的值在CountDownLatch构造函数中赋值(AQS为同步状态提供了getState,setState方法,它们即没有锁保护,也没用使用CAS,因为某些情况下只需要可见性得到保证即可,所以用volatile修饰)。
public CountDownLatch(int count) {
if (count < 0) throw new IllegalArgumentException("count < 0");
this.sync = new Sync(count);
}
之前文章里说过,AQS是JUC之基,各同步器都采用实现一个内部类继承AQS的方式,之前分析的ReentrentLock也是
private static final class Sync extends AbstractQueuedSynchronizer {
private static final long serialVersionUID = 4982264981922014374L;
Sync(int count) {
setState(count);
}
int getCount() {
return getState();
}
protected int tryAcquireShared(int acquires) {
return (getState() == 0) ? 1 : -1;
}
protected boolean tryReleaseShared(int releases) {
// Decrement count; signal when transition to zero
for (;;) {
int c = getState();
if (c == 0)
return false;
int nextc = c-1;
if (compareAndSetState(c, nextc))
return nextc == 0;
}
}
}
AQS有独占与共享两种锁,再创建Node是会指定其中一种模式,之前分析过,两种锁最大不同在tryAcquire操作的实现上,独占锁子类实现的tryAcquire返回boolean,代表是否有更改同步状态的资格;共享锁子类实现tryAcquireShared返回int,小于0则放入等待队列中。
CountDownLatch的tryAcquireShared逻辑是同步状态为0时才会返回正数,大于零返回负数;逻辑是等被等待线程执行完才允许你执行。
tryReleaseShared尝试将同步状态减一。
await
public void await() throws InterruptedException {
sync.acquireSharedInterruptibly(1);
}
//定位到AQS里
public final void acquireSharedInterruptibly(int arg)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
if (tryAcquireShared(arg) < 0)
doAcquireSharedInterruptibly(arg);
}
private void doAcquireSharedInterruptibly(int arg)
throws InterruptedException {
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return;
}
}
if (shouldParkAfterFailedAcquire(p, node) &&
parkAndCheckInterrupt())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
await的逻辑就是如果同步状态大于0,线程就会进入AQS的等待队列中挂起;同步状态等于0则线程不会被阻塞,直接执行;
- 注意addWaiter方法,第一个进队列的线程会排在第二个位置,它之前会有个空Node作为头节点,实现在enq()方法中。这里就很好理解为什么解锁时一上来调用的是unparkSuccessor方法(唤醒head.next节点),因为头是个空节点;之后进队列的节点就依此连接并改变前一节点的状态值为SIGNAL。
- 还有需要注意的是:CountDownLatch的设计是当同步状态变为零则等待队列中所有节点都将被唤醒,而下面的唤醒操作doReleaseShared()一次只唤醒一个,那之后等待的线程由谁来唤醒?由被唤醒的线程。当一个线程被唤醒后仍在doAcquireSharedInterruptibly的for循环里,它会有一次循环而tryAcquireShared返回值肯定为1,那么setHeadAndPropagate会被调用
private void setHeadAndPropagate(Node node, int propagate) {
Node h = head; // Record old head for check below
setHead(node); //设置新头节点
if (propagate > 0 || h == null || h.waitStatus < 0 ||
(h = head) == null || h.waitStatus < 0) {
Node s = node.next;
if (s == null || s.isShared())
doReleaseShared();
}
}
参数propagate是tryAcquireShared的返回值,这里为1;设置当前节点为新的头节,再次执行doReleaseShared唤醒后继节点。依此往后直到全部唤醒。
举例说明:就以上面的test1()为例
该例子设计是三个线程A,B,C需要等待直到主线程D执行完了再继续执行。假设A,B,C按顺序在队列中等待,此时队列中会有四个节点,头节点是一个空节点。D执行了countDown将同步状态改为0,之后按下面源码的顺序,A会被唤醒在doAcquireSharedInterruptibly中调用setHeadAndPropagate,在之后B被唤醒,再之后C。
countDown
public void countDown() {
sync.releaseShared(1);
}
public final boolean releaseShared(int arg) {
if (tryReleaseShared(arg)) {
doReleaseShared();
return true;
}
return false;
}
private void doReleaseShared() {
for (;;) {
Node h = head;
if (h != null && h != tail) {
int ws = h.waitStatus;
//SIGNAL节点状态代表当前节点有需要唤醒的后继节点
if (ws == Node.SIGNAL) {
if (!compareAndSetWaitStatus(h, Node.SIGNAL, 0)) //归零
continue; // loop to recheck cases
unparkSuccessor(h); //唤醒head.next节点
}
else if (ws == 0 &&
!compareAndSetWaitStatus(h, 0, Node.PROPAGATE))
continue; // loop on failed CAS
}
if (h == head) // loop if head changed
break;
}
}
private void unparkSuccessor(Node node) {
int ws = node.waitStatus;
if (ws < 0)
//节点状态重置为0;节点的状态代表不同的行为,0为初始也代表要删除的状态。
compareAndSetWaitStatus(node, ws, 0);
Node s = node.next;
//跳过状态为CANCEL的节点
if (s == null || s.waitStatus > 0) {
s = null;
for (Node t = tail; t != null && t != node; t = t.prev)
if (t.waitStatus <= 0)
s = t;
}
if (s != null)
LockSupport.unpark(s.thread); //唤醒
}
tryReleaseShared利用循环CAS将同步状态state减1。doReleaseShared唤醒head.next节点。
注意:上面doReleaseShared的for循环里有个ws == 0的判断,会将节点的状态变为PROPAGATE,以我们上面的举例来说,ws似乎不可能为0,那么什么情况下ws==0?节点的状态初始为0,会被后继节点设为SIGNAL(doAcquireSharedInterruptibly的shouldParkAfterFailedAcquire里实现)那么可能的情况就是,线程B调用tryAcquireShared返回-1,即同步状态此时还未为0,之后调用doAcquireSharedInterruptibly——>addWaiter此时节点以入队列,但还未改变它的前一个节点A的状态为SIGNAL,也未挂起自己,这时其他线程抢进来将同步状态减为0,接着执行doReleaseShared,这是便会出现ws == 0的情况,这里会将A的状态改为PROPAGATE,再回到B,B调用shouldParkAfterFailedAcquire将A状态改为SIGNAL并返回false,那么这样A就不会执行parkAndCheckInterrupt将自己挂起,再次循环检查是否轮到自己,否则他会将自己挂起,在队列中等待直到轮到自己。
超时
public boolean await(long timeout, TimeUnit unit)
throws InterruptedException {
return sync.tryAcquireSharedNanos(1, unit.toNanos(timeout));
}
//方法再AQS里
public final boolean tryAcquireSharedNanos(int arg, long nanosTimeout)
throws InterruptedException {
if (Thread.interrupted())
throw new InterruptedException();
return tryAcquireShared(arg) >= 0 ||
doAcquireSharedNanos(arg, nanosTimeout);
}
private boolean doAcquireSharedNanos(int arg, long nanosTimeout)
throws InterruptedException {
if (nanosTimeout <= 0L)
return false;
//最终时间
final long deadline = System.nanoTime() + nanosTimeout;
final Node node = addWaiter(Node.SHARED);
boolean failed = true;
try {
for (;;) {
final Node p = node.predecessor();
if (p == head) {
int r = tryAcquireShared(arg);
if (r >= 0) {
setHeadAndPropagate(node, r);
p.next = null; // help GC
failed = false;
return true;
}
}
nanosTimeout = deadline - System.nanoTime();
if (nanosTimeout <= 0L)
return false;
if (shouldParkAfterFailedAcquire(p, node) &&
nanosTimeout > spinForTimeoutThreshold)
LockSupport.parkNanos(this, nanosTimeout);
if (Thread.interrupted())
throw new InterruptedException();
}
} finally {
if (failed)
cancelAcquire(node);
}
}
返回true,代表在时间范围内同步状态归零;返回false代表超时。
本质上利用LockSupport.parkNanos(this, nanosTimeout);
实现与doReleaseShared相似,由于有超时操作则应该考虑到当时间超了,会对上面说的执行流程有什么影响:超时后线程恢复,线程状态变为RUNNABLE就绪状态,抢到执行权后,先在for循环中判断是否轮到自己执行,同步状态是否变为零;否则直接返回false,则该线程不会再等待,会执行下去。