Transformer最全解析(attention is all you need)

Transformer出自google,被广泛应用于NLP的各项任务中,在transformer基础上改进优化的BERT模型在2019年11项NLP任务中表现SOTA。
论文原文:https://arxiv.org/pdf/1706.03762.pdf《attention is all you need》

CNN、RNN、DNN的局限性

在处理变长的序列问题时,一般的做法是利用卷积神经网络或循环神经网络。


基于CNN和双向RNN的变长序列编码

无论卷积还是循环神经网络其实都是对变长序列的一种“局部编码”:卷积神经网络显然是基于N-gram的局部编码;而对于循环神经网络,由于梯度消失等问题也只能建立短距离依赖。


全连接模型和自注意力模型:实线表示为可学习的权重,虚线表示动态生成的权重。

因此,要解决这种短距离依赖的“局部编码”问题,从而对输入序列建立长距离依赖关系。
  • 全连接网络虽然是一种非常直接的建模远距离依赖的模型, 但是无法处理变长的输入序列。不同的输入长度,其连接权重的大小也是不同的。
  • 自注意力模型(self-attention model)的权重是动态生成的,因此可以处理变长的信息序列。

Attention

人体视觉系统中的注意力机制

机器翻译中的注意力机制(连接线越黑代表注意力越强)

Attention可以理解为一种序列聚焦方法,基本思想是对序列分配注意力权重,把注意力集中在最相关的序列上。
Attention 机制实质上就是一个寻址过程,通过给定一个任务相关的查询 Query 向量 Q,通过计算与 Key 的注意力分布并附加在 Value 上,从而计算 Attention Value,这个过程实际上是 Attention 缓解神经网络复杂度的体现,不需要将所有的 N 个输入都输入到神经网络进行计算,而是选择一些与任务相关的信息输入神经网络,与 RNN 中的门控机制思想类似。


attention的计算过程

Self-attention

Q\K\V向量组

用X = [x_1, · · · , x_N ]表示N 个输入样本;通过线性变换得到为查询向量序列,键向量序列和值向量序列:


Q\K\V计算公式

所谓self-attention自注意力机制,即其注意力概率分布来自网络自身的输入的变换,而传统attention的注意力概率分布来自外部。


注意力的计算

注意力计算公式

8是论文中使用的键向量的维数d_k=64的平方根,这会让梯度更稳定。这里也可以使用其它值,8只是默认值。

Multi-head attention

Multi-head attention
  • 多头机制赋予attention层多个“表示子空间”。
  • Transformer中包含8个Q\K\V权重矩阵集合,每个集合都是随机初始化的。

通俗理解Multi-head attention

两头注意力

八头注意力

Transformer结构

Transformer模型中采用了 encoer-decoder 架构,论文中encoder层由6个encoder堆叠在一起,decoder层也一样。


Transformer结构

每一层的encoder和decoder的结构如下图所示:


encoder\decoder内部结构

encoder内部直观展示
  • encoder,包含两层,一个self-attention层和一个前馈神经网络,self-attention能帮助当前节点不仅仅只关注当前的词,从而能获取到上下文的语义。
  • decoder也包含encoder提到的两层网络,但是在这两层中间还有一层attention层,帮助当前节点获取到当前需要关注的重点内容。

Positional Encoding

transformer模型中缺少一种解释输入序列中单词顺序的方法,它跟序列模型还不不一样。为了处理这个问题,transformer给encoder层和decoder层的输入添加了一个额外的向量Positional Encoding,维度和embedding的维度一样,这个向量采用了一种很独特的方法来让模型学习到这个值,这个向量能决定当前词的位置,或者说在一个句子中不同的词之间的距离。这个位置向量的具体计算方法有很多种,论文中的计算方法如下:


Positional Encoding公式

其中pos是指当前词在句子中的位置,i是指向量中每个值的index,可以看出,在偶数位置,使用正弦编码,在奇数位置,使用余弦编码。最后把这个Positional Encoding与embedding的值相加,作为输入送到下一层。


Positional Encoding示意图

位置编码热度图

Residual block残差模块与Layer normalization层归一化

在每个编码器中的每个子层(自注意力、前馈网络)的周围都有一个残差连接,并且都跟随着一个“层-归一化”步骤。


残差模块

Normalization有很多种,但是它们都有一个共同的目的,那就是把输入转化成均值为0方差为1的数据。我们在把数据送入激活函数之前进行normalization(归一化),因为我们不希望输入数据落在激活函数的饱和区。

  • Batch Normalization
    BN的主要思想就是:在每一层的每一批数据上进行归一化。我们可能会对输入数据进行归一化,但是经过该网络层的作用后,我们的数据已经不再是归一化的了。随着这种情况的发展,数据的偏差越来越大,我的反向传播需要考虑到这些大的偏差,这就迫使我们只能使用较小的学习率来防止梯度消失或者梯度爆炸。BN的具体做法就是对每一小批数据,在批这个方向上做归一化。
  • Layer normalization
    它也是归一化数据的一种方式,不过LN 是在每一个样本上计算均值和方差,而不是BN那种在批方向计算均值和方差!公式如下:


    Layer normalization公式

    Batch Normalization VS. Layer normalization

Masked mutil-head attetion

mask 表示掩码,它对某些值进行掩盖,使其在参数更新时不产生效果。Transformer 模型里面涉及两种 mask,分别是 padding mask 和 sequence mask。其中,padding mask 在所有的 scaled dot-product attention 里面都需要用到,而 sequence mask 只有在 decoder 的 self-attention 里面用到。

  • Padding mask
    什么是 padding mask 呢?因为每个批次输入序列长度是不一样的也就是说,我们要对输入序列进行对齐。具体来说,就是给在较短的序列后面填充 0。但是如果输入的序列太长,则是截取左边的内容,把多余的直接舍弃。因为这些填充的位置,其实是没什么意义的,所以我们的attention机制不应该把注意力放在这些位置上,所以我们需要进行一些处理。
    具体的做法是,把这些位置的值加上一个非常大的负数(负无穷),这样的话,经过 softmax,这些位置的概率就会接近0!
    而我们的 padding mask 实际上是一个张量,每个值都是一个Boolean,值为 false 的地方就是我们要进行处理的地方。
  • Sequence mask
    文章前面也提到,sequence mask 是为了使得 decoder 不能看见未来的信息。也就是对于一个序列,在 time_step 为 t 的时刻,我们的解码输出应该只能依赖于 t 时刻之前的输出,而不能依赖 t 之后的输出。因此我们需要想一个办法,把 t 之后的信息给隐藏起来。
    那么具体怎么做呢?也很简单:产生一个上三角矩阵,上三角的值全为0。把这个矩阵作用在每一个序列上,就可以达到我们的目的。
    对于 decoder 的 self-attention,里面使用到的 scaled dot-product attention,同时需要padding mask 和 sequence mask 作为 attn_mask,具体实现就是两个mask相加作为attn_mask。
    其他情况,attn_mask 一律等于 padding mask。

Q&A

  • Transformer为什么需要进行Multi-head Attention

原论文中说到进行Multi-head Attention的原因是将模型分为多个头,形成多个子空间,可以让模型去关注不同方面的信息,最后再将各个方面的信息综合起来。其实直观上也可以想到,如果自己设计这样的一个模型,必然也不会只做一次attention,多次attention综合的结果至少能够起到增强模型的作用,也可以类比CNN中同时使用多个卷积核的作用,直观上讲,多头的注意力有助于网络捕捉到更丰富的特征/信息

  • Transformer相比于RNN/LSTM,有什么优势?为什么?

  1. RNN系列的模型,并行计算能力很差。RNN并行计算的问题就出在这里,因为 T 时刻的计算依赖 T-1 时刻的隐层计算结果,而 T-1 时刻的计算依赖 T-2 时刻的隐层计算结果,如此下去就形成了所谓的序列依赖关系。

  2. Transformer的特征抽取能力比RNN系列的模型要好。具体实验对比可以参考:放弃幻想,全面拥抱Transformer:自然语言处理三大特征抽取器(CNN/RNN/TF)比较。但是值得注意的是,并不是说Transformer就能够完全替代RNN系列的模型了,任何模型都有其适用范围,同样的,RNN系列模型在很多任务上还是首选,熟悉各种模型的内部原理,知其然且知其所以然,才能遇到新任务时,快速分析这时候该用什么样的模型,该怎么做好。

  • 为什么说Transformer可以代替seq2seq?

seq2seq缺点:这里用代替这个词略显不妥当,seq2seq虽已老,但始终还是有其用武之地,seq2seq最大的问题在于将Encoder端的所有信息压缩到一个固定长度的向量中,并将其作为Decoder端首个隐藏状态的输入,来预测Decoder端第一个单词(token)的隐藏状态。在输入序列比较长的时候,这样做显然会损失Encoder端的很多信息,而且这样一股脑的把该固定向量送入Decoder端,Decoder端不能够关注到其想要关注的信息。

Transformer优点:transformer不但对seq2seq模型这两点缺点有了实质性的改进(多头交互式attention模块),而且还引入了self-attention模块,让源序列和目标序列首先“自关联”起来,这样的话,源序列和目标序列自身的embedding表示所蕴含的信息更加丰富,而且后续的FFN层也增强了模型的表达能力,并且Transformer并行计算的能力是远远超过seq2seq系列的模型,因此我认为这是transformer优于seq2seq模型的地方

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,133评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,682评论 3 390
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,784评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,508评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,603评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,607评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,604评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,359评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,805评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,121评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,280评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,959评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,588评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,206评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,193评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,144评论 2 352