KL距离

KL距离,是Kullback-Leibler差异(Kullback-Leibler Divergence)的简称,也叫做相对熵(Relative Entropy)。它衡量的是相同事件空间里的两个概率分布的差异情况。

KL距离全称为Kullback-Leibler Divergence,也被称为相对熵。公式为:

感性的理解,KL距离可以解释为在相同的事件空间P(x)中两个概率P(x)和Q(x)分布的差异情况。
从其物理意义上分析:可解释为在相同事件空间里,概率分布P(x)的事件空间,若用概率分布Q(x)编码时,平均每个基本事件(符号)编码长度增加了多少比特。


信息论解释
信息论解释

如上面展开公式所示,前面一项是在P(x)概率分布下的熵的负数,而熵是用来表示在此概率分布下,平均每个事件需要多少比特编码。这样就不难理解上述物理意义的编码的概念了。
但是KL距离并不是传统意义上的距离。传统意义上的距离需要满足三个条件:1)非负性;2)对称性(不满足);3)三角不等式(不满足)。但是KL距离三个都不满足。反例可以看参考资料中的例子。

+++++++++++++++++++++++++++++++++++++++++++++++++++
作者:肖天睿链接:https://www.zhihu.com/question/29980971/answer/93489660来源:知乎著作权归作者所有,转载请联系作者获得授权。Interesting question, KL divergence is something I'm working with right now.KL divergence KL(p||q), in the context of information theory, measures the amount of extra bits (nats) that is necessary to describe samples from the distribution p with coding based on q instead of p itself. From the Kraft-Macmillan theorem, we know that the coding scheme for one value out of a set X can be represented q(x) = 2^(-l_i) as over X, where l_i is the length of the code for x_i in bits.We know that KL divergence is also the relative entropy between two distributions, and that gives some intuition as to why in it's used in variational methods. Variational methods use functionals as measures in its objective function (i.e. entropy of a distribution takes in a distribution and return a scalar quantity). It's interpreted as the "loss of information" when using one distribution to approximate another, and is desirable in machine learning due to the fact that in models where dimensionality reduction is used, we would like to preserve as much information of the original input as possible. This is more obvious when looking at VAEs which use the KL divergence between the posterior q and prior p distribution over the latent variable z. Likewise, you can refer to EM, where we decomposeln p(X) = L(q) + KL(q||p)Here we maximize the lower bound on L(q) by minimizing the KL divergence, which becomes 0 when p(Z|X) = q(Z). However, in many cases, we wish to restrict the family of distributions and parameterize q(Z) with a set of parameters w, so we can optimize w.r.t. w.Note that KL(p||q) = - \sum p(Z) ln (q(Z) / p(Z)), and so KL(p||q) is different from KL(q||p). This asymmetry, however, can be exploited in the sense that in cases where we wish to learn the parameters of a distribution q that over-compensates for p, we can minimize KL(p||q). Conversely when we wish to seek just the main components of p with q distribution, we can minimize KL(q||p). This example from the Bishop book illustrates this well.


KL divergence belongs to an alpha family of divergences, where the parameter alpha takes on separate limits for the forward and backwards KL. When alpha = 0, it becomes symmetric, and linearly related to the Hellinger distance. There are other metrics such as the Cauchy Schwartz divergence which are symmetric, but in machine learning settings where the goal is to learn simpler, tractable parameterizations of distributions which approximate a target, they might not be as useful as KL.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,362评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,330评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,247评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,560评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,580评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,569评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,929评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,587评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,840评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,596评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,678评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,366评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,945评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,929评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,165评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,271评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,403评论 2 342

推荐阅读更多精彩内容

  • pyspark.sql模块 模块上下文 Spark SQL和DataFrames的重要类: pyspark.sql...
    mpro阅读 9,442评论 0 13
  • # An illustrated introduction to the t-SNE algorithm In t...
    野牛公爵阅读 481评论 0 0
  • 今天上午,我在广场上骑车。我一直骑到广场去,然后再开始从广场骑车。广场上很平静,一个人也没有,就我自己一个...
    a332095e373c张子龙阅读 101评论 0 0
  • 这是我继18年3月北京大讲堂后第二次参加大讲堂活动,大讲堂上我看到了很多新的家人,就如同看到去年的自己,满脸...
    momo1975阅读 229评论 0 0
  • 成都,是一座来了不想走的城市。 收到军信息那会儿,已是午饭点,很意外,他竟然在成都,我当时高兴得几乎要蹦起来。联络...
    蒋重来阅读 356评论 0 3