孟德尔随机化--初筛
各位观众老爷们大家好,欢迎来到蟹道人的生信小课堂!
本节内容我们主要讲解如何进行孟德尔随机化暴露与结局的快速初筛。
主要列举以下几个方法:
基于我自己写的一个小的R包:friendly2MR;
基于epigraphdb数据库开发epigraphdb包;
实用教程:
基于我自己写的一个小的R包:friendly2MR:
安装和加载:
if (!requireNamespace("remotes", quietly = TRUE))install.packages("remotes")
remotes::install_github("xiechengyong123/friendly2MR")
library(friendly2MR)
使用:
# 测试多个暴露对一个结局的阳性结果 ----------------------------------------------------------------------
#rm(list = ls())
library(TwoSampleMR)
library(friendly2MR)
# List available GWASs
ao <- available_outcomes(access_token = NULL)
ao1=ao[grep("ukb",ao$id),]
#IEU GWAS 数据ID
exposure <-ao1$id
exposure=exposure[1:20]
#调用函数,生成结果
mr_mul2one=find_anyexposur_outcome(exposure,"ieu-a-7",write=T)
# 测试一个暴露对多个结局的阳性结果 ----------------------------------------------------------------------
# rm(list = ls())
library(TwoSampleMR)
library(friendly2MR)
# List available GWASs
# ao <- available_outcomes(access_token =NULL)
ao1=ao[grep("ukb",ao$id),]
#IEU GWAS 数据ID
outcome <-ao1$id
outcome=outcome[1:20]
mr_one2mul=find_exposur_anyoutcome("ieu-a-7",outcome,write=T)
结果:
mr_mul2one:
id.exposure | id.outcome | conclusion |
---|---|---|
ukb-b-1489 | ieu-a-7 | 初筛结果阳性 |
ukb-b-8727 | ieu-a-7 | 初筛结果无阳性 |
ukb-a-583 | ieu-a-7 | 需要重新设定LD阈值,否则无法进行MR分析 |
ukb-b-12466 | ieu-a-7 | 筛选暴露P值太小,无法进行MR分析 |
ukb-e-767_EAS | ieu-a-7 | 筛选暴露P值太小,无法进行MR分析 |
ukb-e-1707_p1_MID | ieu-a-7 | 筛选暴露P值太小,无法进行MR分析 |
ukb-e-1883_AFR | ieu-a-7 | 筛选暴露P值太小,无法进行MR分析 |
ukb-b-5326 | ieu-a-7 | 筛选暴露P值太小,无法进行MR分析 |
ukb-d-22608_2 | ieu-a-7 | 筛选暴露P值太小,无法进行MR分析 |
ukb-d-5610_3 | ieu-a-7 | 筛选暴露P值太小,无法进行MR分析 |
ukb-e-2100_AFR | ieu-a-7 | 筛选暴露P值太小,无法进行MR分析 |
ukb-e-20019_CSA | ieu-a-7 | 筛选暴露P值太小,无法进行MR分析 |
ukb-b-20382 | ieu-a-7 | 筛选暴露P值太小,无法进行MR分析 |
ukb-e-4825_EAS | ieu-a-7 | 初筛结果无阳性 |
ukb-e-24015_AFR | ieu-a-7 | 筛选暴露P值太小,无法进行MR分析 |
ukb-e-104900_AFR | ieu-a-7 | 筛选暴露P值太小,无法进行MR分析 |
ukb-b-19277 | ieu-a-7 | 初筛结果阳性 |
ukb-b-17772 | ieu-a-7 | 初筛结果阳性 |
ukb-d-22660_107 | ieu-a-7 | 初筛结果无阳性 |
ukb-b-5863 | ieu-a-7 | 筛选暴露P值太小,无法进行MR分析 |
mr_one2mul:
id.exposure | id.outcome | conclusion |
---|---|---|
ieu-a-7 | ukb-b-1489 | 初筛结果阳性 |
ieu-a-7 | ukb-b-8727 | 初筛结果无阳性 |
ieu-a-7 | ukb-a-583 | 初筛结果无阳性 |
ieu-a-7 | ukb-b-12466 | 初筛结果无阳性 |
ieu-a-7 | ukb-e-767_EAS | 初筛结果无阳性 |
ieu-a-7 | ukb-e-1707_p1_MID | 需要重新设定LD阈值,否则无法进行MR分析 |
ieu-a-7 | ukb-e-1883_AFR | 初筛结果无阳性 |
ieu-a-7 | ukb-b-5326 | 初筛结果无阳性 |
ieu-a-7 | ukb-d-22608_2 | 初筛结果无阳性 |
ieu-a-7 | ukb-d-5610_3 | 初筛结果无阳性 |
ieu-a-7 | ukb-e-2100_AFR | 初筛结果阳性 |
ieu-a-7 | ukb-e-20019_CSA | 初筛结果无阳性 |
ieu-a-7 | ukb-b-20382 | 初筛结果无阳性 |
ieu-a-7 | ukb-e-4825_EAS | 初筛结果无阳性 |
ieu-a-7 | ukb-e-24015_AFR | 初筛结果无阳性 |
ieu-a-7 | ukb-e-104900_AFR | 初筛结果无阳性 |
ieu-a-7 | ukb-b-19277 | 初筛结果无阳性 |
ieu-a-7 | ukb-b-17772 | 初筛结果无阳性 |
ieu-a-7 | ukb-d-22660_107 | 初筛结果无阳性 |
ieu-a-7 | ukb-b-5863 | 初筛结果无阳性 |
基于epigraphdb数据库开发epigraphdb包:
安装以及加载:
if (!requireNamespace("epigraphdb", quietly = TRUE))install.packages("epigraphdb")
library("epigraphdb")
封装函数调用:
# 筛选多个暴露和多个结局中的显著结果 -------------------------------------------------------
fast_screen=function(exposure = NULL,
outcome = NULL,
pval_threshold = 1e-05,
write=T,
file="fast_screen.csv"){
start=Sys.time()
cat("##########################开始筛查######################################\n")
#设置mr_fast_result_all
mr_fast_result_all<-data.frame()
#首先生成IEU的性状信息:
if(!file.exists("IEU_ao.RData")){
ao <- available_outcomes()
write.csv(ao,file = "IEU_ao.csv")
save(ao,file = "IEU_ao.RData")
}
load(file = "IEU_ao.RData")
exposure_length=length(exposure)
outcome_length=length(outcome)
for (i in 1:exposure_length) {
for (j in 1:outcome_length) {
exposure_id = exposure[i]
outcome_id = outcome[j]
# #判断暴露id和性状是否在数据库中
# if (sum((exposure_id %in% ao$trait),(exposure_id %in% ao$id))>0) {
# }else{stop("\n##########################该暴露不在数据库中######################################\n")}
# # #判断结局id和性状是否在数据库中
# if (sum((outcome_id %in% ao$trait),(outcome_id %in% ao$id))>0) {
# }else{stop("\n##########################该结局不在数据库中######################################\n")}
#首先判断是ieu号还是性状名称:
if (!is.null(exposure_id)) {
if (exposure_id %in% ao$id) {
exposure_trait <- ao[ao$id == exposure_id, ]$trait
} else{
exposure_trait = exposure_id
}
} else{
exposure_trait = exposure_id
}
if (!is.null(outcome)) {
if (outcome_id %in% ao$id) {
outcome_trait <- ao[ao$id == outcome_id, ]$trait
} else{
outcome_trait = outcome_id
}
} else{
outcome_trait = outcome_id
}
mr_fast_result = epigraphdb::mr(
exposure_trait = exposure_trait,
pval_threshold = pval_threshold,
outcome_trait = outcome_trait,
mode = "table"
)
#根据ieu号进行筛选:
# mr_fast_result1<-data.frame()
if (!is.null(exposure_id)) {
if (exposure_id %in% ao$id) {
mr_fast_result <-
mr_fast_result[mr_fast_result$exposure.id == exposure_id, ]
}else{mr_fast_result=mr_fast_result}
}
# mr_fast_result1 <- unique(rbind(mr_fast_result1, mr_fast_result1))
# mr_fast_result2<-data.frame()
if (!is.null(outcome_id)) {
if (outcome_id %in% ao$id) {
mr_fast_result <- mr_fast_result[mr_fast_result$outcome.id == outcome_id, ]
}else{mr_fast_result=mr_fast_result}
}
# 多个结果合并
# mr_fast_result2 <- unique(rbind(mr_fast_result2,mr_fast_result2))
mr_fast_result_all<-unique(rbind(mr_fast_result,mr_fast_result_all))
}
}
# mr_fast_result_all<-unique(rbind(mr_fast_result_all,mr_fast_result_all))
if (write) {
write.csv(mr_fast_result_all,file=file,row.names = F)
}
end=Sys.time()
print(end-start)
cat("##########################筛查结束######################################\n")
return(mr_fast_result_all)
}
#筛选一个暴露和所有结局中的显著结果
mv_mr_result=fast_screen(exposure="Body mass index")
mv_mr_result1=fast_screen(exposure="ieu-a-2")
#筛选所有暴露和一个结局中的显著结果
mv_mr_result2=fast_screen(outcome="Coronary heart disease")
mv_mr_result3=fast_screen(outcome="ieu-a-7")
#筛选一个暴露和一个结局中的显著结果
mv_mr_result4=fast_screen(exposure="Body mass index",outcome="Coronary heart disease")
mv_mr_result5=fast_screen(exposure="ieu-a-2",outcome="ieu-a-7")
mv_mr_result6=fast_screen(exposure="Body mass index",outcome="ieu-a-7")
mv_mr_result7=fast_screen(exposure="ieu-a-2",outcome="Coronary heart disease")
#筛选多个暴露和所有结局
mv_mr_result8=fast_screen(exposure=c("Body mass index","Coronary heart disease"))
mv_mr_result9=fast_screen(exposure=c("Coronary heart disease","ieu-a-2"))
mv_mr_result10=fast_screen(exposure=c("Body mass index","ieu-a-7"))
mv_mr_result11=fast_screen(exposure=c("ieu-a-2","ieu-a-7"))
#筛选所有暴露和多个结局
mv_mr_result12=fast_screen(outcome=c("Body mass index","Coronary heart disease"))
mv_mr_result3=fast_screen(outcome=c("ieu-a-2","Coronary heart disease"))
mv_mr_result14=fast_screen(outcome=c("Body mass index","ieu-a-7"))
mv_mr_result15=fast_screen(outcome=c("ieu-a-2","ieu-a-7"))
#筛选多个暴露和多个结局
mv_mr_result16=fast_screen(exposure=c("Body mass index","Coronary heart disease"),outcome=c("Body mass index","Coronary heart disease"))
mv_mr_result17=fast_screen(outcome=c("ieu-a-2","Coronary heart disease"))
mv_mr_result18=fast_screen(outcome=c("Body mass index","ieu-a-7"))
mv_mr_result19=fast_screen(outcome=c("ieu-a-2","ieu-a-7"))
mv_mr_result20=fast_screen(exposure=c("ieu-a-2","ieu-a-7"),outcome=c("ieu-a-2","ieu-a-7"))
mv_mr_result21=fast_screen(exposure="ieu-a-2",outcome="ieu-a-7")
mv_mr_result22=fast_screen(exposure="ieu-a-7",outcome="ieu-a-2")
结果:
mv_mr_result:
exposure.id | exposure.trait | outcome.id | outcome.trait | mr.b | mr.se | mr.pval | mr.method | mr.selection | mr.moescore |
---|---|---|---|---|---|---|---|---|---|
ieu-a-974 | Body mass index | ebi-a-GCST005062 | Fibrinogen levels | 0.193038233 | 0.002236082 | 0 | FE IVW | DF | 1 |
ebi-a-GCST006368 | Body mass index | ukb-b-20188 | Arm fat percentage (left) | 0.533277383 | 0.010444881 | 0 | FE IVW | DF + HF | 0.93 |
ieu-a-2 | Body mass index | ukb-b-4650 | Comparative body size at age 10 | 0.439223556 | 0.009889465 | 0 | FE IVW | Tophits | 0.9 |
ieu-a-2 | Body mass index | ukb-b-2303 | Body mass index (BMI) | 0.673901055 | 0.017841589 | 0 | FE IVW | DF + HF | 0.92 |
ieu-a-2 | Body mass index | ukb-b-16446 | Basal metabolic rate | 0.44864951 | 0.011831593 | 0 | FE IVW | DF + HF | 0.94 |
ieu-a-2 | Body mass index | ukb-a-282 | Arm fat percentage (right) | 0.527720537 | 0.012506983 | 0 | FE IVW | DF + HF | 0.94 |
ieu-a-2 | Body mass index | ieu-a-94 | Body mass index | 1.008870831 | 0.02685817 | 0 | FE IVW | HF | 0.86 |
ieu-a-2 | Body mass index | ieu-a-48 | Hip circumference | 0.828391733 | 0.014868948 | 0 | FE IVW | Tophits | 0.91 |
ieu-a-2 | Body mass index | ukb-b-9405 | Waist circumference | 0.644965247 | 0.012623943 | 0 | FE IVW | Tophits | 0.94 |
ieu-a-2 | Body mass index | ukb-b-9093 | Arm predicted mass (left) | 0.398396568 | 0.008409717 | 0 | FE IVW | Tophits | 0.92 |
ieu-a-785 | Body mass index | ieu-a-85 | Extreme body mass index | 1.717111367 | 0.001634409 | 0 | FE IVW | DF + HF | 0.82 |
ebi-a-GCST004904 | Body mass index | ukb-b-2303 | Body mass index (BMI) | 0.59491911 | 0.015287241 | 0 | FE IVW | Tophits | 0.81 |
ieu-a-835 | Body mass index | ukb-b-18096 | Leg fat mass (right) | 0.607879093 | 0.013882094 | 0 | FE IVW | DF + HF | 0.94 |
ieu-a-835 | Body mass index | ukb-b-12854 | Arm fat percentage (right) | 0.525880654 | 0.013035386 | 0 | FE IVW | DF + HF | 0.96 |
ieu-a-835 | Body mass index | ieu-a-93 | Overweight | 1.671102672 | 0.034075749 | 0 | FE IVW | Tophits | 0.84 |
ieu-a-835 | Body mass index | ieu-a-61 | Waist circumference | 0.823566324 | 0.019441318 | 0 | FE IVW | Tophits | 0.94 |
ieu-a-835 | Body mass index | ieu-a-60 | Waist circumference | 0.819575103 | 0.019483688 | 0 | FE IVW | Tophits | 0.9 |
ieu-a-2 | Body mass index | ieu-a-65 | Waist circumference | 0.731622271 | 0.020027625 | 3.62E-292 | FE IVW | DF + HF | 0.88 |
ebi-a-GCST004904 | Body mass index | ukb-b-16099 | Leg fat-free mass (left) | 0.338792555 | 0.009287316 | 2.38E-291 | FE IVW | Tophits | 0.83 |
ieu-a-835 | Body mass index | ieu-a-50 | Hip circumference | 0.836276005 | 0.022981123 | 6.20E-290 | FE IVW | HF | 0.89 |
ieu-a-2 | Body mass index | ukb-b-15590 | Hip circumference | 0.651710135 | 0.017978537 | 1.02E-287 | FE IVW | DF + HF | 0.91 |
ebi-a-GCST006368 | Body mass index | ieu-a-94 | Body mass index | 0.964264501 | 0.02711376 | 5.11E-277 | FE IVW | Tophits | 0.84 |
ebi-a-GCST006368 | Body mass index | ukb-b-7212 | Leg fat mass (left) | 0.617988587 | 0.017559991 | 2.56E-271 | Weighted median | HF | 0.89 |
ieu-a-95 | Body mass index | ieu-a-974 | Body mass index | 0.980908389 | 0.027924883 | 2.64E-270 | FE IVW | HF | 0.74 |
ieu-a-835 | Body mass index | ukb-b-15590 | Hip circumference | 0.648765312 | 0.018483694 | 6.90E-270 | FE IVW | DF + HF | 0.93 |
ieu-a-835 | Body mass index | ieu-a-64 | Waist circumference | 0.739561429 | 0.021168464 | 2.04E-267 | FE IVW | DF + HF | 0.89 |
ieu-a-2 | Body mass index | ukb-a-277 | Leg predicted mass (right) | 0.443018641 | 0.012685733 | 3.38E-267 | FE IVW | DF + HF | 0.91 |
ieu-a-785 | Body mass index | ieu-a-52 | Hip circumference | 0.76669586 | 0.022013173 | 8.87E-266 | FE IVW | DF + HF | 0.92 |
ieu-a-835 | Body mass index | ieu-a-94 | Body mass index | 1.002287387 | 0.028871062 | 4.52E-264 | FE IVW | HF | 0.82 |
mv_mr_result1:
exposure.id | exposure.trait | outcome.id | outcome.trait | mr.b | mr.se | mr.pval | mr.method | mr.selection | mr.moescore |
---|---|---|---|---|---|---|---|---|---|
ieu-a-2 | Body mass index | ukb-b-4650 | Comparative body size at age 10 | 0.439223556 | 0.009889465 | 0 | FE IVW | Tophits | 0.9 |
ieu-a-2 | Body mass index | ukb-b-2303 | Body mass index (BMI) | 0.673901055 | 0.017841589 | 0 | FE IVW | DF + HF | 0.92 |
ieu-a-2 | Body mass index | ukb-b-16446 | Basal metabolic rate | 0.44864951 | 0.011831593 | 0 | FE IVW | DF + HF | 0.94 |
ieu-a-2 | Body mass index | ukb-a-282 | Arm fat percentage (right) | 0.527720537 | 0.012506983 | 0 | FE IVW | DF + HF | 0.94 |
ieu-a-2 | Body mass index | ieu-a-94 | Body mass index | 1.008870831 | 0.02685817 | 0 | FE IVW | HF | 0.86 |
ieu-a-2 | Body mass index | ieu-a-48 | Hip circumference | 0.828391733 | 0.014868948 | 0 | FE IVW | Tophits | 0.91 |
ieu-a-2 | Body mass index | ukb-b-9405 | Waist circumference | 0.644965247 | 0.012623943 | 0 | FE IVW | Tophits | 0.94 |
ieu-a-2 | Body mass index | ukb-b-9093 | Arm predicted mass (left) | 0.398396568 | 0.008409717 | 0 | FE IVW | Tophits | 0.92 |
ieu-a-2 | Body mass index | ieu-a-65 | Waist circumference | 0.731622271 | 0.020027625 | 3.62E-292 | FE IVW | DF + HF | 0.88 |
ieu-a-2 | Body mass index | ukb-b-15590 | Hip circumference | 0.651710135 | 0.017978537 | 1.02E-287 | FE IVW | DF + HF | 0.91 |
ieu-a-2 | Body mass index | ukb-a-277 | Leg predicted mass (right) | 0.443018641 | 0.012685733 | 3.38E-267 | FE IVW | DF + HF | 0.91 |
ieu-a-2 | Body mass index | ukb-b-7212 | Leg fat mass (left) | 0.648456311 | 0.018929275 | 3.45E-257 | Simple median | Tophits | 0.93 |
ieu-a-2 | Body mass index | ieu-a-52 | Hip circumference | 0.797228817 | 0.023501272 | 3.07E-252 | FE IVW | Tophits | 0.85 |
ieu-a-2 | Body mass index | ieu-a-53 | Hip circumference | 0.81089765 | 0.024143591 | 2.65E-247 | FE IVW | Tophits | 0.85 |
ieu-a-2 | Body mass index | ukb-b-18096 | Leg fat mass (right) | 0.637960977 | 0.019111543 | 2.59E-244 | Simple median | Tophits | 0.92 |
ieu-a-2 | Body mass index | ukb-b-6704 | Arm fat mass (right) | 0.81387157 | 0.024648715 | 4.36E-239 | Simple median | Tophits | 0.9 |
ieu-a-2 | Body mass index | ieu-a-107 | Weight | 0.965895656 | 0.029396065 | 8.76E-237 | FE IVW | Tophits | 0.86 |
ieu-a-2 | Body mass index | ukb-b-19393 | Whole body fat mass | 0.763723593 | 0.023467402 | 2.54E-232 | Simple median | Tophits | 0.91 |
ieu-a-2 | Body mass index | ukb-b-8338 | Arm fat mass (left) | 0.814308642 | 0.025767648 | 3.47E-219 | Simple median | Tophits | 0.91 |
ieu-a-2 | Body mass index | ukb-a-248 | Body mass index (BMI) | 0.841602649 | 0.026890568 | 5.08E-215 | Simple median | HF | 0.92 |
ieu-a-2 | Body mass index | ukb-a-275 | Leg fat mass (right) | 0.640040167 | 0.020840402 | 4.00E-207 | Weighted median | HF | 0.93 |
ieu-a-2 | Body mass index | ukb-b-18377 | Leg fat percentage (left) | 0.428676596 | 0.014325895 | 9.82E-197 | Simple median | HF | 0.92 |
mv_mr_result2:
exposure.id | exposure.trait | outcome.id | outcome.trait | mr.b | mr.se | mr.pval | mr.method | mr.selection | mr.moescore |
---|---|---|---|---|---|---|---|---|---|
ubm-a-496 | IDP dMRI TBSS ICVF Superior cerebellar peduncle R | ebi-a-GCST000998 | Coronary heart disease | 0.136105468 | 0.000331893 | 0 | FE IVW | DF | 1 |
ubm-a-2677 | volume Right-Cerebellum-Cortex | ebi-a-GCST000998 | Coronary heart disease | -0.22925404 | 0.005693358 | 0 | FE IVW | DF | 1 |
ubm-a-496 | IDP dMRI TBSS ICVF Superior cerebellar peduncle R | ieu-a-8 | Coronary heart disease | 0.136105468 | 0.000331893 | 0 | FE IVW | DF | 1 |
ubm-a-2677 | volume Right-Cerebellum-Cortex | ieu-a-8 | Coronary heart disease | -0.22925404 | 0.005693358 | 0 | FE IVW | DF | 1 |
ukb-a-309 | Other serious medical condition/disability diagnosed by doctor | ieu-a-7 | Coronary heart disease | 2.760557121 | 0.059659725 | 0 | FE IVW | DF | 1 |
prot-a-67 | Alcohol dehydrogenase [NADP(+)] | ieu-a-7 | Coronary heart disease | -0.018451731 | 1.50E-05 | 0 | FE IVW | DF | 1 |
prot-a-399 | C-C motif chemokine 23 | ieu-a-7 | Coronary heart disease | 0.018490732 | 0.00048839 | 0 | FE IVW | DF | 1 |
prot-a-2427 | Prostaglandin F2 receptor negative regulator | ieu-a-7 | Coronary heart disease | -0.017530907 | 0.000307085 | 0 | FE IVW | DF | 1 |
prot-a-1792 | Leucine-rich repeat neuronal protein 1 | ieu-a-7 | Coronary heart disease | 0.07904299 | 0.002053008 | 0 | FE IVW | DF | 1 |
prot-a-1666 | Kallikrein-7 | ieu-a-7 | Coronary heart disease | -0.034176952 | 0.00030915 | 0 | FE IVW | DF | 1 |
prot-a-1587 | Inter-alpha-trypsin inhibitor heavy chain H5 | ieu-a-7 | Coronary heart disease | -0.058270284 | 0.001067473 | 0 | FE IVW | DF | 1 |
ukb-d-I9_IHD | Ischaemic heart disease, wide definition | ieu-a-9 | Coronary heart disease | 11.44308868 | 0.184143218 | 0 | FE IVW | DF | 1 |
ukb-a-12 | Nap during day | ieu-a-9 | Coronary heart disease | 2.437416506 | 0.008056364 | 0 | FE IVW | DF | 1 |
ieu-a-796 | Urate | ieu-a-9 | Coronary heart disease | 0.148498726 | 0.001844479 | 0 | FE IVW | DF | 1 |
ukb-b-3278 | Length of menstrual cycle | ieu-a-6 | Coronary heart disease | 0.344276965 | 0.004943106 | 0 | FE IVW | DF | 1 |
ukb-b-1806 | Number of symbol digit matches attempted | ieu-a-6 | Coronary heart disease | -0.708949098 | 0.006804179 | 0 | FE IVW | DF | 1 |
ukb-a-23 | Number of operations self-reported | ieu-a-6 | Coronary heart disease | 1.153492785 | 0.02236149 | 0 | FE IVW | DF | 1 |
ebi-a-GCST005038 | Allergic disease (asthma, hay fever or eczema) | ieu-a-9 | Coronary heart disease | -0.144630627 | 0.001863039 | 0 | FE IVW | DF | 1 |
prot-a-2215 | Programmed cell death 1 ligand 2 | ieu-a-6 | Coronary heart disease | -0.030704826 | 0.00082524 | 5.23E-303 | FE IVW | DF | 1 |
met-c-918 | Phosphatidylcholine and other cholines | ebi-a-GCST000998 | Coronary heart disease | 0.049792917 | 0.001370729 | 6.32E-289 | FE IVW | DF | 1 |
met-c-918 | Phosphatidylcholine and other cholines | ieu-a-8 | Coronary heart disease | 0.049792917 | 0.001370729 | 6.32E-289 | FE IVW | DF | 1 |
prot-a-2039 | Neurofascin | ieu-a-8 | Coronary heart disease | 0.010041464 | 0.000277356 | 5.21E-287 | FE IVW | DF | 1 |
mv_mr_result3:
exposure.id | exposure.trait | outcome.id | outcome.trait | mr.b | mr.se | mr.pval | mr.method | mr.selection | mr.moescore |
---|---|---|---|---|---|---|---|---|---|
ukb-a-309 | Other serious medical condition/disability diagnosed by doctor | ieu-a-7 | Coronary heart disease | 2.760557121 | 0.059659725 | 0 | FE IVW | DF | 1 |
prot-a-67 | Alcohol dehydrogenase [NADP(+)] | ieu-a-7 | Coronary heart disease | -0.018451731 | 1.50E-05 | 0 | FE IVW | DF | 1 |
prot-a-399 | C-C motif chemokine 23 | ieu-a-7 | Coronary heart disease | 0.018490732 | 0.00048839 | 0 | FE IVW | DF | 1 |
prot-a-2427 | Prostaglandin F2 receptor negative regulator | ieu-a-7 | Coronary heart disease | -0.017530907 | 0.000307085 | 0 | FE IVW | DF | 1 |
prot-a-1792 | Leucine-rich repeat neuronal protein 1 | ieu-a-7 | Coronary heart disease | 0.07904299 | 0.002053008 | 0 | FE IVW | DF | 1 |
prot-a-1666 | Kallikrein-7 | ieu-a-7 | Coronary heart disease | -0.034176952 | 0.00030915 | 0 | FE IVW | DF | 1 |
prot-a-1587 | Inter-alpha-trypsin inhibitor heavy chain H5 | ieu-a-7 | Coronary heart disease | -0.058270284 | 0.001067473 | 0 | FE IVW | DF | 1 |
prot-a-2470 | Sulfhydryl oxidase 2 | ieu-a-7 | Coronary heart disease | 0.069634599 | 0.001998623 | 5.77E-266 | FE IVW | DF | 1 |
ukb-b-18189 | Reason for glasses/contact lenses: For long-sightedness, i.e. for distance and near, but particularly for near tasks like reading (called 'hypermetropia') | ieu-a-7 | Coronary heart disease | 2.379792789 | 0.080957625 | 6.26E-190 | FE IVW | DF | 1 |
prot-a-280 | Uncharacterized protein C10orf35 | ieu-a-7 | Coronary heart disease | -0.125030158 | 0.00453479 | 2.46E-167 | FE IVW | DF | 1 |
ukb-a-210 | Illnesses of mother: Alzheimer's disease/dementia | ieu-a-7 | Coronary heart disease | 1.931390023 | 0.077693322 | 2.06E-136 | FE IVW | DF | 1 |
ebi-a-GCST005920 | Paternal history of Alzheimer's disease | ieu-a-7 | Coronary heart disease | 0.171597385 | 0.007441708 | 1.20E-117 | FE IVW | DF | 1 |
prot-a-857 | Dipeptidase 2 | ieu-a-7 | Coronary heart disease | 0.073361658 | 0.003188102 | 3.61E-117 | FE IVW | DF | 1 |
prot-a-1688 | Keratinocyte differentiation-associated protein | ieu-a-7 | Coronary heart disease | 0.049755495 | 0.00230633 | 3.19E-103 | FE IVW | DF | 1 |
ebi-a-GCST005194 | Coronary artery disease | ieu-a-7 | Coronary heart disease | 0.954774586 | 0.017136978 | 4.32E-93 | Simple mean | HF | 0.87 |
ukb-b-10912 | Non-cancer illness code, self-reported: high cholesterol | ieu-a-7 | Coronary heart disease | 3.796891592 | 0.1862581 | 2.27E-92 | FE IVW | HF | 0.96 |
ukb-b-7872 | Mouth/teeth dental problems: Bleeding gums | ieu-a-7 | Coronary heart disease | 1.769264657 | 0.089973244 | 4.36E-86 | FE IVW | DF | 1 |
ukb-d-C3_PRIMARY_LYMPHOID_HEMATOPOIETIC | Primary_lymphoid and hematopoietic malignant neoplasms | ieu-a-7 | Coronary heart disease | 13.78520614 | 0.709314219 | 3.94E-84 | FE IVW | DF | 1 |
ukb-b-14177 | Vascular/heart problems diagnosed by doctor: High blood pressure | ieu-a-7 | Coronary heart disease | 1.705308306 | 0.092300392 | 3.24E-76 | FE IVW | Tophits | 0.87 |
ukb-b-18953 | Operative procedures - secondary OPCS: T86.2 Sampling of axillary lymph nodes | ieu-a-7 | Coronary heart disease | 1.122459119 | 0.060846997 | 5.49E-76 | FE IVW | DF | 1 |
prot-a-420 | CD177 antigen | ieu-a-7 | Coronary heart disease | 0.01990002 | 0.001147197 | 2.09E-67 | FE IVW | DF | 1 |
......后续有兴趣大家可以自己试试。
基于epigraphdb在线网站:
网站页面:
Network 3D图:
效果相当炸裂
列表:
exposure.id(Click to sort Ascending) | exposure.trait(Click to sort Ascending) | outcome.id(Click to sort Ascending) | outcome.trait(Click to sort Ascending) | mr.b(Click to sort Ascending) | mr.se(Click to sort Ascending) | mr.pval(Click to sort Ascending) | mr.method(Click to sort Ascending) | mr.selection(Click to sort Ascending) | mr.moescore(Click to sort Ascending) |
---|---|---|---|---|---|---|---|---|---|
ieu-a-974 | Body mass index | ebi-a-GCST005062 | Fibrinogen levels | 0.193 | 0.0022 | 0 | FE IVW | DF | 1 |
ebi-a-GCST006368 | Body mass index | ukb-b-20188 | Arm fat percentage (left) | 0.5333 | 0.0104 | 0 | FE IVW | DF + HF | 0.93 |
ieu-a-2 | Body mass index | ukb-b-4650 | Comparative body size at age 10 | 0.4392 | 0.0099 | 0 | FE IVW | Tophits | 0.9 |
ieu-a-2 | Body mass index | ukb-b-2303 | Body mass index (BMI) | 0.6739 | 0.0178 | 0 | FE IVW | DF + HF | 0.92 |
ieu-a-2 | Body mass index | ukb-b-16446 | Basal metabolic rate | 0.4486 | 0.0118 | 0 | FE IVW | DF + HF | 0.94 |
ieu-a-2 | Body mass index | ukb-a-282 | Arm fat percentage (right) | 0.5277 | 0.0125 | 0 | FE IVW | DF + HF | 0.94 |
ieu-a-2 | Body mass index | ieu-a-94 | Body mass index | 1.0089 | 0.0269 | 0 | FE IVW | HF | 0.86 |
ieu-a-2 | Body mass index | ieu-a-48 | Hip circumference | 0.8284 | 0.0149 | 0 | FE IVW | Tophits | 0.91 |
ieu-a-2 | Body mass index | ukb-b-9405 | Waist circumference | 0.645 | 0.0126 | 0 | FE IVW | Tophits | 0.94 |
ieu-a-2 | Body mass index | ukb-b-9093 | Arm predicted mass (left) | 0.3984 | 0.0084 | 0 | FE IVW | Tophits | 0.92 |
与R代码跑出的结果一致
代码爬取:
他还非常贴心的列出了如何获取相关结果的R和python代码,相当nice!
注意:
请注意,epigraphdb在线数据库和R包筛选出的结果,都是使用自动算法产生的初步结果,所以应该始终通过使用进一步的方法进行分析来验证。大家有兴趣的话,可以去多多探索。。。
使用教程
b站链接(【孟德尔随机化--初筛2】 https://www.bilibili.com/video/BV1bm4y1k7Ca/?share_source=copy_web&vd_source=db46041789fa1bbf5497ce06b73f53d8)