1.概念理解
蚁群算法(Ant Colony Algorithm,ACA)的基本原理来源于自然界蚂蚁觅食的最短路径原理。蚂蚁视觉不发达,它如何能在没有提示的情况下找到食物源到巢穴的最短路径,并在环境发生变化后,自适应地搜索新的最佳路径?
以下图为例,A是蚂蚁巢穴,B是食物源。
一开始蚂蚁可能不知道哪条路是最短的,所以走ADB和ACB路径的概率是一样的,而蚂蚁在走过的路上会释放一种特有的分泌物——信息素。已知走ADB路径的蚂蚁会更快地到达B,所以在之后的某一时刻,待在A处的蚂蚁会渐渐感觉路径ADB上的信息素的浓度要比路径ACB的大(简单理解就是,同一段时间内ADB路径上可能有10只蚂蚁已经到B,ACB路径上只有8只蚂蚁到B,自然ADB上的信息素更多一些),所以在选择路径上会更偏向ADB,随着时间的推移,几乎所有蚂蚁都会选择路径ADB搬运食物,如下图(c)所示。
2.算法流程
①对相关参数进行初始化,包括蚁群规模、信息素因子、启发函数因子、信息素挥发因子、信息素常数、最大迭代次数等,以及将数据读入程序,并对数据进行基本的处理,如将城市的坐标位置,转为城市间的矩阵。
②随机将蚂蚁放于不同的出发点,对每个蚂蚁计算其下一个访问城市,直至所有蚂蚁访问完所有城市。
③计算各个蚂蚁经过的路径长度Lk,记录当前迭代次数中的最优解,同时对各个城市连接路径上的信息素浓度进行更新。
④判断是否达到最大迭代次数,若否,则返回步骤2,否则终止程序。
⑤输出程序结果,并根据需要输出程序寻优过程中的相关指标,如运行时间、收敛迭代次数等。
适合解决组合优化问题。
3.举例
数据来源
以上面网址TSPLIB的berlin52为例,berlin52有52座城市的数据,其坐标数据如下图,数据存于Chap9_citys_data.xlsx中:
%% 数据准备
% 清空环境变量
clear all
clc
% 程序运行计时开始
t0 = clock;
%导入数据
citys=table2array(readtable('Chap9_citys_data.xlsx','Range','B2:C53'));
% 计算城市间相互距离
n = size(citys,1);
D = zeros(n,n);
for i = 1:n
for j = 1:n
if i ~= j
D(i,j) = sqrt(sum((citys(i,:) - citys(j,:)).^2));
else
D(i,j) = 1e-4; %设定的对角矩阵修正值
end
end
end
% 初始化参数
m = 75; % 蚂蚁数量
alpha = 1; % 信息素重要程度因子
beta = 5; % 启发函数重要程度因子
vol = 0.2; % 信息素挥发(volatilization)因子
Q = 10; % 常系数
Heu_F = 1./D; % 启发函数(heuristic function)
Tau = ones(n,n); % 信息素矩阵
Table = zeros(m,n); % 路径记录表
iter = 1; % 迭代次数初值
iter_max = 100; % 最大迭代次数
Route_best = zeros(iter_max,n); % 各代最佳路径
Length_best = zeros(iter_max,1); % 各代最佳路径的长度
Length_ave = zeros(iter_max,1); % 各代路径的平均长度
Limit_iter = 0; % 程序收敛时迭代次数
% 迭代寻找最佳路径
while iter <= iter_max
% 随机产生各个蚂蚁的起点城市
start = zeros(m,1);
for i = 1:m
temp = randperm(n);
start(i) = temp(1);
end
Table(:,1) = start;
% 构建解空间
citys_index = 1:n;
% 逐个蚂蚁路径选择
for i = 1:m
% 逐个城市路径选择
for j = 2:n
tabu = Table(i,1:(j - 1)); % 已访问的城市集合(禁忌表)
allow_index = ~ismember(citys_index,tabu); % 参加说明1(程序底部)
allow = citys_index(allow_index); % 待访问的城市集合
P = allow;
% 计算城市间转移概率
for k = 1:length(allow)
P(k) = Tau(tabu(end),allow(k))^alpha * Heu_F(tabu(end),allow(k))^beta;
end
P = P/sum(P);
% 轮盘赌法选择下一个访问城市
Pc = cumsum(P); %参加说明2(程序底部)
target_index = find(Pc >= rand);
target = allow(target_index(1));
Table(i,j) = target;
end
end
% 计算各个蚂蚁的路径距离
Length = zeros(m,1);
for i = 1:m
Route = Table(i,:);
for j = 1:(n - 1)
Length(i) = Length(i) + D(Route(j),Route(j + 1));
end
Length(i) = Length(i) + D(Route(n),Route(1));
end
% 计算最短路径距离及平均距离
if iter == 1
[min_Length,min_index] = min(Length);
Length_best(iter) = min_Length;
Length_ave(iter) = mean(Length);
Route_best(iter,:) = Table(min_index,:);
Limit_iter = 1;
else
[min_Length,min_index] = min(Length);
Length_best(iter) = min(Length_best(iter - 1),min_Length);
Length_ave(iter) = mean(Length);
if Length_best(iter) == min_Length
Route_best(iter,:) = Table(min_index,:);
Limit_iter = iter;
else
Route_best(iter,:) = Route_best((iter-1),:);
end
end
% 更新信息素
Delta_Tau = zeros(n,n);
% 逐个蚂蚁计算
for i = 1:m
% 逐个城市计算
for j = 1:(n - 1)
Delta_Tau(Table(i,j),Table(i,j+1)) = Delta_Tau(Table(i,j),Table(i,j+1)) + Q/Length(i);
end
Delta_Tau(Table(i,n),Table(i,1)) = Delta_Tau(Table(i,n),Table(i,1)) + Q/Length(i);
end
Tau = (1-vol) * Tau + Delta_Tau;
% 迭代次数加1,清空路径记录表
iter = iter + 1;
Table = zeros(m,n);
end
% 结果显示
[Shortest_Length,index] = min(Length_best);
Shortest_Route = Route_best(index,:);
Time_Cost=etime(clock,t0);
disp(['最短距离:' num2str(Shortest_Length)]);
disp(['最短路径:' num2str([Shortest_Route Shortest_Route(1)])]);
disp(['收敛迭代次数:' num2str(Limit_iter)]);
disp(['程序执行时间:' num2str(Time_Cost) '秒']);
% 绘图
figure(1)
plot([citys(Shortest_Route,1);citys(Shortest_Route(1),1)],... %三点省略符为Matlab续行符
[citys(Shortest_Route,2);citys(Shortest_Route(1),2)],'o-');
grid on
for i = 1:size(citys,1)
text(citys(i,1),citys(i,2),[' ' num2str(i)]);
end
text(citys(Shortest_Route(1),1),citys(Shortest_Route(1),2),' 起点');
text(citys(Shortest_Route(end),1),citys(Shortest_Route(end),2),' 终点');
xlabel('城市位置横坐标')
ylabel('城市位置纵坐标')
title(['ACA最优化路径(最短距离:' num2str(Shortest_Length) ')'])
figure(2)
plot(1:iter_max,Length_best,'b')
legend('最短距离')
xlabel('迭代次数')
ylabel('距离')
title('算法收敛轨迹')
%--------------------------------------------------------------------------
% 程序解释或说明
% 1. ismember函数判断一个变量中的元素是否在另一个变量中出现,返回0-1矩阵;
% 2. cumsum函数用于求变量中累加元素的和,如A=[1, 2, 3, 4, 5], 那么cumsum(A)=[1, 3, 6, 10, 15]。
输出结果
最短距离:7791.3756
最短路径:46 44 34 35 36 39 40 38 37 48 24 5 15 6 4 25 12 28 27 26 47 13 14 52 11 51 33 43 10 9 8 41 19 45 32 49 1 22 31 18 3 17 21 42 7 2 29 30 23 20 50 16 46
收敛迭代次数:34
程序执行时间:9.395秒