20年数据开发大牛总结出的大数据挖掘:概念、模型、方法和算法

前言

本书主要阐述数据挖掘原理,在示例的引导下详细讲解起源于统计学、机器学习、神经网络、模料逻辑和演化计算等学科的具有代表性的、最前沿的挖掘方法和算法。本书还着重描述如何恰当地选择方法数据分析软件并合理地调整参数。每章末尾附有复习题。

本书特点

1.介绍支持向量机(SVM)和Kohonen映射

2.讲解DBSCAN、BIRCH和分布式DBSCAN聚类算法

3.介绍贝叶斯网络,讨论图形中的Betweeness和Centrality参数测量算法

4.分析在建立决策树时使用的CART算法和基尼指数

5.介绍Bagging & Boosting集成学习方法,并详述AdaBoost算法

6.讨论Relief以及PageRank算法

7.讨论文本挖掘的潜在语义分析(LSA),并分析如何测定文本文档之间的语义相似性

8.讲解时态、空间、Web、文本、并行和分布式数据挖掘等新主题

9.更详细地讲解数据挖掘技术商业、隐私、安全和法律方面的内容

第一章 数据挖掘的概念

1.1 概述

1.2 数据挖掘的起源

1.3 数据挖掘过程

1.4 大型数据集

1.5 数据仓库

1.6 数据挖掘的商业方面:为什么数据挖掘项目会失败.

1.7 本书结构安排.

1.8 复习题

1.9 参考书目

第二章 数据准备

2.1 原始数据的表述

2.2 原始数据的特性

2.3 原始数据的转换

2.3.1 标准化

2.3.2 数据平整

2.3.3 差值和比率

2.4 丢失数据

2.5 时间相关数据

2.6 异常点分析

2.7 复习题

2.8 参考书目

第三章 数据归约

3.1 大型数据集的维度

3.2 特征归约

3.2.1 特征选择

3.2.2 特征提取

3.3 Relief算法

3.4 特征排列的熵度量.

3.5 主成分分析

3.6 值归约

3.7 特征离散化:ChiMerge技术

3.8 案例归约

3.9 复习题

3.10 参考书目

第四章 从数据中学习

4.1 学习机器

4.2 统计学习原理

4.3 学习方法的类型

4.4 常见的学习任务

4.5 支持向量机.

4.6k NN:最近邻分类器.

4.7 模型选择 与泛化

4.8 模型的评估

4.9 90%准确的情形

4.9.1 保险欺诈检测

4.9.2 改进心脏护理

4.10 复习题

4.11 参考书目

第五章 统计方法

5.1 统计推断

5.2 评测数据集的差异

5.3 贝叶斯定理

5.4 预测回归

5.5 方差分析

5.6 对数回归

5.7 对数-线性模型.

5.8 线性判别分析

5.9 复习题

5.10 参考书目

第六章 决策树和决策规则

6.1 决策树

6.2 C4.5算法:生成决策树

6.3 未知属性值

6.4 修剪决策树

6.5 C4.5 算法:生成决策规则

6.6 CART 算法和Gini指标

6.7 决策树和决策规则的局限性

6.8 复习题

6.9 参考书 目

第七章人工神经网络

第八章 集成学习

第九章 聚类分析

第十章 关联规则

第十一章 Web 挖掘和文本挖掘

第十二章 数据挖掘高级技术

第十三章 遗传算法

第十四章 模糊集和模糊逻辑

第十五章 可视化方法

附录A数据挖掘工具

附录B数据挖掘应用

总结

由于这本书的细节分的太多了,今天小编就整理到这里想要获取的小伙伴可以+WX17667506182来获取哦~~~

最后给小编一个关注就是最大的动力!

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,406评论 6 503
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,732评论 3 393
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,711评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,380评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,432评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,301评论 1 301
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,145评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,008评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,443评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,649评论 3 334
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,795评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,501评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,119评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,731评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,865评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,899评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,724评论 2 354