Image Processing summarization

1、image filtering:linear——box filter,gaussian filter
                                   non-linear——median filter、Bilateral filter、Guided Image Filter

functions:Texture Match,Model Match,etc;Notation:when do the template match,there are some preprocessing like zero-mean

other methods to do the match:based on the distance——such as:SSD(shotrest square distance)

2、Fourier frequency:refer to the note before——Image Enhance in frequency

3、Image pyramid——Gaussian/Laplacian

Gaussian pyramid——step1:Gaussian smooth
                                       step2:down-sampling
                                       step3:Loop step1&step2

Laplacian pyramid——step1:Gaussian smooth
                                        step2:upsampling
                                        step3:the image before step1 substract the image after step2
                                        step4:loop step1、2、3

4、Image interpolation:nearest/linear etc.

5、Image Blending:refer to the note——Image blending

6、Edge Detection:Canny/Pb boundary detector/Structed Random Forest classifier to judge wheter it is  the edge[it is based on the patch level rather than the pixel level]/crisp Boundary Detector

Notation:when doing the operation based on the gradient ,remember smooth the image first!

7、Thresholding operate——Binary image

8、Morphological operators:refer to the folder:the chapter “Reading Book note3” in《OpenCV practical notes》

9、Interesting points corresponding&alignment

      a、finding Corner——Harris(rotation invariant),due to based on the gradient operation,it has the illumination invariant but without scale invariant.

     b、some feature descriptor:SIFT,HOG,BOW etc.

    c、MSER:refer to watershed algorithm overview

10、Fitting and alignment

         a、Least square line fitting

         b、Total least squares(PCA)——Rotation invariant

***a、b are sensitive to unnormal noise points

        c、Hough transfer:refer to" Line Detected by Hough"

        d、RANSAC

        e、ICP(Iterative closest points)

11、Common transformations:translation/rotation/aspect/affine/perspective——refer to the folder:the chapter “Reading Book note 4” in《OpenCV practical notes》

12、Segmentation&grouping:ways

a、cluster:K-means/mean-shift

b、boundaries(watershed)

c、graph(graph cut,grab cut)

d、labeling

e、gestalt cues(based on the perception information of some shape)

13、Object Detection with statistical template:

a、Examplar-based:K-NN

b、Linear classifier:Logistic regression,Linear SVM

c、None-Linear classifer:Decision Trees/Boosted Decision Trees/Kernelized SVM

d、Generative classifier:Naive Bays

SUMMARIZATION:



最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容