第八章(数据加工:连接, 合并, 整形)

Hierarchical Indexing是pandas中一个重要的特性,能让我们在一个轴(axis)上有多个index levels(索引层级)。它可以让我们在低维格式下处理高维数据。这里给出一个简单的例子,构建一个series,其index是a list of lists:

8.1 层次化索引

层次化索引(hierarchical indexing)是pandas的一项重要功能,它使你能在一个轴上拥有多个(两个以上)索引级别。抽象点说,它使你能以低维度形式处理高维度数据。我们先来看一个简单的例子:创建一个Series,并用一个由列表或数组组成的列表作为索引:

import pandas as pd
import numpy as np
In [9]: data = pd.Series(np.random.randn(9),
   ...:                  index=[['a', 'a', 'a', 'b', 'b', 'c', 'c', 'd', 'd'],
   ...:                         [1, 2, 3, 1, 3, 1, 2, 2, 3]])

In [10]: data
Out[10]: 
a  1   -0.204708
   2    0.478943
   3   -0.519439
b  1   -0.555730
   3    1.965781
c  1    1.393406
   2    0.092908
d  2    0.281746
   3    0.769023
dtype: float64

看到的结果是经过美化的带有MultiIndex索引的Series的格式。索引之间的“间隔”表示“直接使用上面的标签”:

In [11]: data.index
Out[11]: 
MultiIndex(levels=[['a', 'b', 'c', 'd'], [1, 2, 3]],
           labels=[[0, 0, 0, 1, 1, 2, 2, 3, 3], [0, 1, 2, 0, 2, 0, 1, 1, 2]])

对于一个层次化索引的对象,可以使用所谓的部分索引,使用它选取数据子集的操作更简单:

In [12]: data['b']
Out[12]: 
1   -0.555730
3    1.965781
dtype: float64

In [13]: data['b':'c']
Out[13]: 
b  1   -0.555730
   3    1.965781
c  1    1.393406
   2    0.092908
dtype: float64

In [14]: data.loc[['b', 'd']]
Out[14]: 
b  1   -0.555730
   3    1.965781
d  2    0.281746
   3    0.769023
dtype: float64

有时甚至还可以在“内层”中进行选取:

In [15]: data.loc[:, 2]
Out[15]: 
a    0.478943
c    0.092908
d    0.281746
dtype: float64

层次化索引在数据重塑和基于分组的操作(如透视表生成)中扮演着重要的角色。例如,可以通过unstack方法将这段数据重新安排到一个DataFrame中:

In [16]: data.unstack()
Out[16]: 
          1         2         3
a -0.204708  0.478943 -0.519439
b -0.555730       NaN  1.965781
c  1.393406  0.092908       NaN
d       NaN  0.281746  0.769023

unstack的逆运算是stack:

In [17]: data.unstack().stack()
Out[17]: 
a  1   -0.204708
   2    0.478943
   3   -0.519439
b  1   -0.555730
   3    1.965781
c  1    1.393406
   2    0.092908
d  2    0.281746
   3    0.769023
dtype: float64

stack和unstack将在本章后面详细讲解。
对于一个DataFrame,每条轴都可以有分层索引:

In [18]: frame = pd.DataFrame(np.arange(12).reshape((4, 3)),
   ....:                      index=[['a', 'a', 'b', 'b'], [1, 2, 1, 2]],
   ....:                      columns=[['Ohio', 'Ohio', 'Colorado'],
   ....:                               ['Green', 'Red', 'Green']])

In [19]: frame
Out[19]: 
     Ohio     Colorado
    Green Red    Green
a 1     0   1        2
  2     3   4        5
b 1     6   7        8
  2     9  10       11

各层都可以有名字(可以是字符串,也可以是别的Python对象)。如果指定了名称,它们就会显示在控制台输出中:

In [20]: frame.index.names = ['key1', 'key2']

In [21]: frame.columns.names = ['state', 'color']

In [22]: frame
Out[22]: 
state      Ohio     Colorado
color     Green Red    Green
key1 key2                   
a    1        0   1        2
     2        3   4        5
b    1        6   7        8
     2        9  10       11

有了部分列索引,因此可以轻松选取列分组:

In [23]: frame['Ohio']
Out[23]: 
color      Green  Red
key1 key2            
a    1         0    1
     2         3    4
b    1         6    7
     2         9   10

1.重排与分级排序

有时候我们需要在一个axis(轴)上按层级进行排序,或者在一个层级上,根据值来进行排序。swaplevel会取两个层级编号或者名字,并返回一个层级改变后的新对象(数据本身并不会被改变):

In [24]: frame.swaplevel('key1', 'key2')
Out[24]: 
state      Ohio     Colorado
color     Green Red    Green
key2 key1                   
1    a        0   1        2
2    a        3   4        5
1    b        6   7        8
2    b        9  10       11

而sort_index则根据单个级别中的值对数据进行排序。交换级别时,常常也会用到sort_index,这样最终结果就是按照指定顺序进行字母排序了:

In [25]: frame.sort_index(level=1)
Out[25]: 
state      Ohio     Colorado
color     Green Red    Green
key1 key2                   
a    1        0   1        2
b    1        6   7        8
a    2        3   4        5
b    2        9  10       11

In [26]: frame.swaplevel(0, 1).sort_index(level=0)# 把key1余key2交换后,按key2来排序
Out[26]: 
state      Ohio     Colorado
color     Green Red    Green
key2 key1                   
1    a        0   1        2
     b        6   7        8
2    a        3   4        5
     b        9  10       11

2 Summary Statistics by Level (按层级来归纳统计数据)

在DataFrame和Series中,一些描述和归纳统计数据都是有一个level选项的,这里我们可以指定在某个axis下,按某个level(层级)来汇总。比如上面的DataFrame,我们可以按 行 或 列的层级来进行汇总:

In [27]: frame.sum(level='key2')
Out[27]: 
state  Ohio     Colorado
color Green Red    Green
key2                    
1         6   8       10
2        12  14       16

In [28]: frame.sum(level='color', axis=1)
Out[28]: 
color      Green  Red
key1 key2            
a    1         2    1
     2         8    4
b    1        14    7
     2        20   10

3 Indexing with a DataFrame’s columns(利用DataFrame的列来索引)

人们经常想要将DataFrame的一个或多个列当做行索引来用,或者可能希望将行索引变成DataFrame的列。以下面这个DataFrame为例:

In [29]: frame = pd.DataFrame({'a': range(7), 'b': range(7, 0, -1),
   ....:                       'c': ['one', 'one', 'one', 'two', 'two',
   ....:                             'two', 'two'],
   ....:                       'd': [0, 1, 2, 0, 1, 2, 3]})

In [30]: frame
Out[30]: 
   a  b    c  d
0  0  7  one  0
1  1  6  one  1
2  2  5  one  2
3  3  4  two  0
4  4  3  two  1
5  5  2  two  2
6  6  1  two  3

DataFrame的set_index函数会将其一个或多个列转换为行索引,并创建一个新的DataFrame:

In [31]: frame2 = frame.set_index(['c', 'd'])

In [32]: frame2
Out[32]: 
       a  b
c   d      
one 0  0  7
    1  1  6
    2  2  5
two 0  3  4
    1  4  3
    2  5  2
    3  6  1

默认情况下,那些列会从DataFrame中移除,但也可以将其保留下来:

In [33]: frame.set_index(['c', 'd'], drop=False)
Out[33]: 
       a  b    c  d
c   d              
one 0  0  7  one  0
    1  1  6  one  1
    2  2  5  one  2
two 0  3  4  two  0
    1  4  3  two  1
    2  5  2  two  2
    3  6  1  two  3

reset_index的功能跟set_index刚好相反,层次化索引的级别会被转移到列里面:

In [34]: frame2.reset_index()
Out[34]:
c  d  a  b
0  one  0  0  7
1  one  1  1  6
2  one  2  2  5
3  two  0  3  4
4  two  1  4  3
5  two  2  5  2
6  two  3  6  1

8.2 合并数据集

pandas里有几种方法可以合并数据:

pandas.merge 按一个或多个key把DataFrame中的行连接起来。这个和SQL或其他一些关系型数据库中的join操作相似。
pandas.concat 在一个axis(轴)上,串联或堆叠(stack)多个对象。
combine_first 实例方法(instance method)能合并相互之间有重复的数据,并用一个对象里的值填满缺失值

1 Database-Style DataFrame Joins(数据库风格的DataFrame Joins)

Merge或join操作,能通过一个或多个key,把不同的数据集的行连接在一起。这种操作主要集中于关系型数据库。pandas中的merge函数是这种操作的主要切入点:

In [35]: df1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'a', 'b'],
   ....:                     'data1': range(7)})

In [36]: df2 = pd.DataFrame({'key': ['a', 'b', 'd'],
   ....:                     'data2': range(3)})

In [37]: df1
Out[37]: 
   data1 key
0      0   b
1      1   b
2      2   a
3      3   c
4      4   a
5      5   a
6      6   b

In [38]: df2
Out[38]: 
   data2 key
0      0   a
1      1   b
2      2   d

这个例子是many-to-one join(多个变为一个的连接);在df1中有标签为a和b的行,而df2中的key列,每一行只有对应的一个值。调用merge我们可以得到:

In [39]: pd.merge(df1, df2)
Out[39]: 
   data1 key  data2
0      0   b      1
1      1   b      1
2      6   b      1
3      2   a      0
4      4   a      0
5      5   a      0

这里我们并没有指定按哪一列来连接。如果我们没有指定,merge会用两个对象中都存在的列名作为key(键)。当然,最好还是清楚指定比较好:

In [40]: pd.merge(df1, df2, on='key')
Out[40]: 
   data1 key  data2
0      0   b      1
1      1   b      1
2      6   b      1
3      2   a      0
4      4   a      0
5      5   a      0

如果每一个对象中的列名不一会,我们可以分别指定:

In [41]: df3 = pd.DataFrame({'lkey': ['b', 'b', 'a', 'c', 'a', 'a', 'b'],
   ....:                     'data1': range(7)})

In [42]: df4 = pd.DataFrame({'rkey': ['a', 'b', 'd'],
   ....:                     'data2': range(3)})

In [43]: pd.merge(df3, df4, left_on='lkey', right_on='rkey')
Out[43]: 
   data1 lkey  data2 rkey
0      0    b      1    b
1      1    b      1    b
2      6    b      1    b
3      2    a      0    a
4      4    a      0    a
5      5    a      0    a

我们可能注意到,在结果中并没有c和d。因为merge默认是inner join(内连接),结果中的key是交集的结果,或者在两个表格中都有的集合。其他一些可选项,比如left, right, outer。outer join(外连接)取key的合集,其实就是left join和right join同时应用的效果:

In [44]: pd.merge(df1, df2, how='outer')
Out[44]: 
   data1 key  data2
0    0.0   b    1.0
1    1.0   b    1.0
2    6.0   b    1.0
3    2.0   a    0.0
4    4.0   a    0.0
5    5.0   a    0.0
6    3.0   c    NaN
7    NaN   d    2.0

这里是how的一些选项:
many-to-many(多对多)连接也被定义好了,不过可能不是那么直观。这里有一个例子:

In [45]: df1 = pd.DataFrame({'key': ['b', 'b', 'a', 'c', 'a', 'b'],
   ....:                     'data1': range(6)})

In [46]: df2 = pd.DataFrame({'key': ['a', 'b', 'a', 'b', 'd'],
   ....:                     'data2': range(5)})

In [47]: df1
Out[47]: 
   data1 key
0      0   b
1      1   b
2      2   a
3      3   c
4      4   a
5      5   b

In [48]: df2
Out[48]: 
   data2 key
0      0   a
1      1   b
2      2   a
3      3   b
4      4   d

In [49]: pd.merge(df1, df2, on='key', how='left')
Out[49]: 
    data1 key  data2
0       0   b    1.0
1       0   b    3.0
2       1   b    1.0
3       1   b    3.0
4       2   a    0.0
5       2   a    2.0
6       3   c    NaN
7       4   a    0.0
8       4   a    2.0
9       5   b    1.0
10      5   b    3.0

many-to-many join是对行进行笛卡尔集运算。(两个集合X和Y的笛卡儿积(Cartesian product),又称直积,在集合论中表示为X × Y,是所有可能的有序对组成的集合。比如1到13是一个集合,四种花色是一个集合,二者的笛卡尔积就有52个元素)。这里在左侧的DataFrame中有三行含b,右边的DataFrame则有两行含b,于是结果是有六行含b。这个join方法只会让不相同的key值出现在最后的结果里:

In [50]: pd.merge(df1, df2, how='inner')
Out[50]: 
   data1 key  data2
0      0   b      1
1      0   b      3
2      1   b      1
3      1   b      3
4      5   b      1
5      5   b      3
6      2   a      0
7      2   a      2
8      4   a      0
9      4   a      2

要根据多个键进行合并,传入一个由列名组成的列表即可:

In [51]: left = pd.DataFrame({'key1': ['foo', 'foo', 'bar'],
   ....:                      'key2': ['one', 'two', 'one'],
   ....:                      'lval': [1, 2, 3]})

In [52]: right = pd.DataFrame({'key1': ['foo', 'foo', 'bar', 'bar'],
   ....:                       'key2': ['one', 'one', 'one', 'two'],
   ....:                       'rval': [4, 5, 6, 7]})

In [53]: pd.merge(left, right, on=['key1', 'key2'], how='outer')
Out[53]: 
  key1 key2  lval  rval
0  foo  one   1.0   4.0
1  foo  one   1.0   5.0
2  foo  two   2.0   NaN
3  bar  one   3.0   6.0
4  bar  two   NaN   7.0

2 Merging on Index(在index上做归并)

在一些情况下,用于归并的key(键),可能是DataFrame中的index。这种情况下,可以使用left_index=True 或 right_index=True来指明,哪一个index被用来作为归并键:

2 Concatenating Along an Axis(沿着轴串联)

另一种结合方式被称为可互换的,比如concatenation, binding, or stacking(串联,绑定,堆叠)。Numpy中的concatenate函数可以作用于numpy 数组.

In [79]: arr = np.arange(12).reshape((3, 4))

In [80]: arr
Out[80]: 
array([[ 0,  1,  2,  3],
       [ 4,  5,  6,  7],
       [ 8,  9, 10, 11]])

In [81]: np.concatenate([arr, arr], axis=1)
Out[81]: 
array([[ 0,  1,  2,  3,  0,  1,  2,  3],
       [ 4,  5,  6,  7,  4,  5,  6,  7],
       [ 8,  9, 10, 11,  8,  9, 10, 11]])

3 Combining Data with Overlap(用重叠来合并数据)

另一种数据合并方法既不属于merge,也不属于concatenation。比如两个数据集,index可能完全覆盖,或覆盖一部分。这里举个例子,考虑下numpy的where函数,可以在数组上进行类似于if-else表达式般的判断:

In [108]: a = pd.Series([np.nan, 2.5, np.nan, 3.5, 4.5, np.nan],
   .....:               index=['f', 'e', 'd', 'c', 'b', 'a'])

In [109]: b = pd.Series(np.arange(len(a), dtype=np.float64),
   .....:               index=['f', 'e', 'd', 'c', 'b', 'a'])

In [110]: b[-1] = np.nan

In [111]: a
Out[111]: 
f    NaN
e    2.5
d    NaN
c    3.5
b    4.5
a    NaN
dtype: float64

In [112]: b
Out[112]: 
f    0.0
e    1.0
d    2.0
c    3.0
b    4.0
a    NaN
dtype: float64

In [113]: np.where(pd.isnull(a), b, a)
Out[113]: array([ 0. ,  2.5,  2. ,  3.5,  4.5,  nan])

Series有一个combine_first方法,实现的也是一样的功能,还带有pandas的数据对齐:

In [114]: b[:-2].combine_first(a[2:])
Out[114]: 
a    NaN
b    4.5
c    3.0
d    2.0
e    1.0
f    0.0
dtype: float64

8.3 Reshaping and Pivoting(整形和旋转)

1 Reshaping with Hierarchical Indexing(对多层级索引进行整形)

多层级索引提供一套统一的方法来整理DataFrame中数据。主要有两个操作:
stack
这个操作会把列旋转为行
unstack
这个会把行变为列
下面我们会给出一些例子。这里有一个DataFrame,我们用字符串数组来作为行和列的索引:

In [120]: data = pd.DataFrame(np.arange(6).reshape((2, 3)),
   .....:                     index=pd.Index(['Ohio','Colorado'], name='state'),
   .....:                     columns=pd.Index(['one', 'two', 'three'],
   .....:                     name='number'))

In [121]: data
Out[121]: 
number    one  two  three
state                    
Ohio        0    1      2
Colorado    3    4      5

对该数据使用stack方法即可将列转换为行,得到一个Series:

In [122]: result = data.stack()

In [123]: result
Out[123]: 
state     number
Ohio      one       0
          two       1
          three     2
Colorado  one       3
          two       4
          three     5
dtype: int64

对于一个层次化索引的Series,你可以用unstack将其重排为一个DataFrame:

In [124]: result.unstack()
Out[124]: 
number    one  two  three
state                    
Ohio        0    1      2
Colorado    3    4      5

stack默认会滤除缺失数据,因此该运算是可逆的:

In [132]: data2.unstack()
Out[132]: 
       a    b    c    d    e
one  0.0  1.0  2.0  3.0  NaN
two  NaN  NaN  4.0  5.0  6.0

In [133]: data2.unstack().stack()
Out[133]: 
one  a    0.0
     b    1.0
     c    2.0
     d    3.0
two  c    4.0
     d    5.0
     e    6.0
dtype: float64

In [134]: data2.unstack().stack(dropna=False)
Out[134]: 
one  a    0.0
     b    1.0
     c    2.0
     d    3.0
     e    NaN
two  a    NaN
     b    NaN
     c    4.0
     d    5.0
     e    6.0
dtype: float64

2 Pivoting “Long” to “Wide” Format(把“长”格式旋转为“宽”格式)

多个时间序列数据通常是以所谓的“长格式”(long)或“堆叠格式”(stacked)存储在数据库和CSV中的。我们先加载一些示例数据,做一些时间序列规整和数据清洗

In [139]: data = pd.read_csv('examples/macrodata.csv')
In [141]: periods = pd.PeriodIndex(year=data.year, quarter=data.quarter,
   .....:                          name='date')

In [142]: columns = pd.Index(['realgdp', 'infl', 'unemp'], name='item')

In [143]: data = data.reindex(columns=columns)

In [144]: data.index = periods.to_timestamp('D', 'end')

In [145]: ldata = data.stack().reset_index().rename(columns={0: 'value'})

这种数据经常被存储于关系型数据库中,比如MySQL,这种固定的模式(列名和数据类型)能让作为item列中不同的数据,添加到表格中。在前一个例子里,date和item通常被用来当做primary keys(主键,这是关系型数据库里的术语),能实现relational integrity(关系完整性)和更方便的join(联结)。但是在一些例子里,这种格式的数据并不好处理;我们可能更喜欢有一个DataFrame,其中一列能有不同的item值,并用date列作为索引。DataFrame中的pivot方法,就能做到这种转换:

pivoted = ldata.pivot('date', 'item', 'value')

3 Pivoting “Wide” to “Long” Format(把“宽”格式旋转为“长”格式)

用于DataFrame,与pivot相反的操作是pandas.melt。相对于把一列变为多列的pivot,melt会把多列变为一列,产生一个比输入的DataFrame还要长的结果。看一下例子:

In [157]: df = pd.DataFrame({'key': ['foo', 'bar', 'baz'],
   .....:                    'A': [1, 2, 3],
   .....:                    'B': [4, 5, 6],
   .....:                    'C': [7, 8, 9]})

In [158]: df
Out[158]: 
   A  B  C  key
0  1  4  7  foo
1  2  5  8  bar
2  3  6  9  baz

key列可能是分组指标,其它的列是数据值。当使用pandas.melt,我们必须指明哪些列是分组指标。下面使用key作为唯一的分组指标:

In [159]: melted = pd.melt(df, ['key'])

In [160]: melted
Out[160]: 
   key variable  value
0  foo        A      1
1  bar        A      2
2  baz        A      3
3  foo        B      4
4  bar        B      5
5  baz        B      6
6  foo        C      7
7  bar        C      8
8  baz        C      9

使用pivot,可以重塑回原来的样子:

In [161]: reshaped = melted.pivot('key', 'variable', 'value')

In [162]: reshaped
Out[162]: 
variable  A  B  C
key              
bar       2  5  8
baz       3  6  9
foo       1  4  7
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,558评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,002评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,024评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,144评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,255评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,295评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,068评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,478评论 1 305
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,789评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,965评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,649评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,267评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,982评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,800评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,847评论 2 351

推荐阅读更多精彩内容