最全最先进的检测算法对比Faster R-CNN, R-FCN, SSD, FPN, RetinaNet and YOLOv3

很难衡量一个检测算法的好坏,因为除了算法本身的思路之外,还有许多因素影响它的速度和精度,比如:

  • 特征提取网络(VGG, ResNet, Inception, MobileNet);
  • 输出的步长,越大分类数目越多,相应的速度也会受影响;
  • IOU的评判方式;
  • nms的阈值;
  • 难样本挖掘的比率(正样本和负样本的比率);
  • 生成的proposal的数目(不同的方法输出是不同的);
  • bbox的编码方式,是预测offset还是相对位置?
  • 数据预处理的数据增广方法;
  • 用哪个特征层来做检测;
  • 定位误差函数的实现方法;
  • 不同的框架;
  • 训练时候的不同设置参数,如batch_size, 输入图片大小,学习率,学习衰减率等因素;

为了对比不同的算法,可以不考虑上述的所有影响因素,直接对论文结果评测,应该能大体看出不同方法的速度差异。


上图是一个所有方法的预览。从图中可以看出RFCN的准确度是最高的。

上图可以看出,速度最快的还是yolo和SSD一体化的方法。

这是在ms-coo数据集上的测试效果,从效果可以看出,Retina-Net在mAP效果是最好的。其中Faster-RCNN改用Resnet作为特征抽取网络准确率有较大的提升。

最后是Google做的一个research,在TensorFlow上统一的实现了所有的检测算法,yolo没有包含在内。最终的测试结果可以表示为:


从上面可以大致的看出,Faster-RCNN的准确度更加精确,而RFCN和SSD更快。

上述只是一个预览,但是除了这些之外,我们还需要考虑一些更加细化的因素。

不同的特征抽取网络

特征抽取网络不通,最终的结果也不同。简单来说,一个更加复杂的特征抽取网络可以大大的提高Faster-RCNN和RFCN的精确度,但是对于SSD,更好的特征抽取网络对结果影响不大,所以你看SSD+MobileNet也不会太大的影响结果。从这个图可以看得很清楚:

目标物体的大小

对于大物体,SSD即使使用一个较弱的特征抽取器也可以获取较好的精确度。但在小物体上SSD的表现结果非常不好。

具体来看,SSD在一张图片里面就经常漏检测小物体,比如:

Proposal的数目

不同的Proposal数目会影响检测器的速度和精度。这个很重要,很多人想加速Faaster-RCNN但是不知道从何下手,显然这里是一个很好的切入点。
将Proposal的数目从300削减到50,速度可以提高3倍,但是精度仅仅降低4%,可以说非常值了。我们从这张图可以看得很清楚:


最终我们可以得到一个很科学的结果:

  1. 最高精度

使用Faster-RCNN毫无疑问,使用Inception ResNet作为特征抽取网络,但是速度是一张图片1s;
还有一种方法是一种叫做集成的动态选择模型的方法(这个你就不要追求速度了);

  1. 最快

SSD+MobileNet是速度最快的,但是小目标检测效果差;

  1. 平衡
    如果既要保证精度又要保持速度,采用Faster-RCNN将proposla的数目减少到50,同时还能够达到RFCN和SSD的速度,但mAP更优。
    最后,欢迎广大AI从业者、创业者加入深圳地区AI交流群,添加本人微信 jintianiloveu 发送信息:深圳AI交流 拉群。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,590评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 86,808评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,151评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,779评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,773评论 5 367
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,656评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,022评论 3 398
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,678评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 41,038评论 1 299
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,659评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,756评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,411评论 4 321
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,005评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,973评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,203评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,053评论 2 350
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,495评论 2 343

推荐阅读更多精彩内容