转载于:https://my.oschina.net/shou1156226/blog/1143066
https://blog.csdn.net/weixin_33757911/article/details/91544531
1. 什么是双重检查锁定?
假设你有一个类,它实现了著名的单例模式,现在你想让它变得线程安全。显然的一个方法就是通过增加一个锁来保证互斥共享。这样的话,如果有两个线程同时调用了Singleton::getInstance,将只有其中之一会创建这个单例。
Singleton* Singleton::getInstance() {
Lock lock;
// scope-based lock, released automatically when the function returns
if (m_instance == NULL) {
m_instance = new Singleton;
} return m_instance;
}
这是完全合法的方法,但是一旦单例被创建,实际上就不再需要锁了。锁不一定慢,但是在高并发的条件下,不具有很好的伸缩性。
Singleton* Singleton::getInstance() {
Singleton* tmp = m_instance; ... // insert memory barrier
if (tmp == NULL) {
Lock lock;
tmp = m_instance;
if (tmp == NULL) {
tmp = new Singleton; ... // insert memory barrier
m_instance = tmp;
}
} return tmp;
}
双重检查锁定模式是由此得名:在单例指针m_instance为NULL的时候,我们仅仅使用了一个锁,这个锁使偶然访问到该单例的第一组线程继续下去。而在锁的内部,m_instance被再次检查,这样就只有第一个线程可以创建这个单例了。
这与可运行的实现非常相近。只是在突出显示的几行漏掉了某种内存屏障。在作者写这篇论文的时候,还没有填补此项空白的轻便的C/C++函数。现在,C++11已经有了。
2. 用 C++11 获得与释放屏障
你可以用获得与释放屏障 安全的完成上述实现,在我以前的文章中我已经详细的解释过这个主题。不过,为了让代码真正的具有可移植性,你还必须要将m_instance包装成原子类型,并且用放松的原子操作(译注:即非原子操作)来操作它。这里给出的是结果代码,获取与释放屏障部分高亮了。
std::atomic<Singleton*> Singleton::m_instance;
std::mutex Singleton::m_mutex;
Singleton* Singleton::getInstance() {
Singleton* tmp = m_instance.load(std::memory_order_relaxed);
std::atomic_thread_fence(std::memory_order_acquire);
if (tmp == nullptr) {
std::lock_guard<std::mutex> lock(m_mutex);
tmp = m_instance.load(std::memory_order_relaxed);
if (tmp == nullptr) {
tmp = new Singleton;
std::atomic_thread_fence(std::memory_order_release);
m_instance.store(tmp, std::memory_order_relaxed);
}
}
return tmp;
}
即使是在多核系统上,它也可以令人信赖的工作,因为内存屏障在创建单例的线程与其后任何跳过这个锁的线程之间,创建了一种同步的关系。Singleton::m_instance充当警卫变量,而单例本身的内容充当有效载荷。
所有那些有缺陷的DCLP实现都忽视了这一点:如果没有同步的关系,将无法保证第一个线程的所有写操作——特别是,那些在单例构造器中执行的写操作——可以对第二个线程可见,虽然m_instance指针本身是可见的!第一个线程具有的锁也对此无能为力,因为第二个线程不必获得任何锁,因此它能并发的运行。
3. 使用c++ 11低级排序约束
C++11的获取与释放屏障可以正确的实现DCLP,而且应该能够针对当今大多数的多核设备,生成优化的机器代码,但是它们似乎不是很时兴。在C++11中获得同等效果的首选方法,应该是使用基于低级排序约束的原子操作。正如我先前所说,一条写释放(write-release)可以同步于一条读获取(read-acquire)。
std::atomic<Singleton*> Singleton::m_instance;
std::mutex Singleton::m_mutex;
Singleton* Singleton::getInstance() {
Singleton* tmp = m_instance.load(std::memory_order_acquire);
if (tmp == nullptr) {
std::lock_guard<std::mutex> lock(m_mutex);
tmp = m_instance.load(std::memory_order_relaxed);
if (tmp == nullptr) {
tmp = new Singleton;
m_instance.store(tmp, std::memory_order_release);
}
}
return tmp;
}
从技术上说,这种无锁的同步形式,并不像独立屏障的形式那么严格;上面的操作只是意味着阻止它们自己周围的内存重新排序,这与独立的屏障不同,后者意味着阻止所有相邻的操作的特定类型的内存重排序。尽管如此,在x86/64, ARMv6/v7,以及 PowerPC架构上,对于这两种形式,可能的最好代码都是相同的。
4. 使用 C++11的顺序一致原子
C++11提供了一种完全不同的方法来写无锁代码。如果在所有原子库函数上,你忽略了可选的std::memory_order参数,那么默认值std::memory_order_seq_cst就会将所有的原子变量转变为顺序一致的(sequentially consistent)(SC)原子。通过SC原子,只要不存在数据竞争,整个算法就可以保证是顺序一致的。SC原子Java 5+中的volatile变量非常相似。这里是使用SC原子的一个DCLP实现。如之前所有例子一样,一旦单例被创建,第二行高亮将与第一行同步。
std::atomic<Singleton*> Singleton::m_instance;
std::mutex Singleton::m_mutex;
Singleton* Singleton::getInstance() {
Singleton* tmp = m_instance.load();
if (tmp == nullptr) {
std::lock_guard<std::mutex> lock(m_mutex);
tmp = m_instance.load();
if (tmp == nullptr) {
tmp = new Singleton;
m_instance.store(tmp);
}
}
return tmp;
}
SC原子被认为可以使程序员更容易思考。其代价是生成的机器代码似乎比之前的例子效率要低。
5. 使用C++11中的静态初始化器
如果你想得到一个线程安全的实例,C++11不允许你跳过以上的所有步骤。你可以简单使用一个静态初始化器。
Singleton& Singleton::getInstance() {
static Singleton instance;
return instance;
}
就个人而言,我常常想,如果是需要初始化一个单例,最好是在程序启动的时候做这个事情。但是显然DCLP可以拯救你于泥潭。而且在实际的使用中,你还可以用DCLP来将任意数值类型存储到一个无锁的哈希表。