图像处理

'''

import cv2

import numpyas np

import PIL

from PILimport Image

import matplotlib

import matplotlib.pyplot as plt

import matplotlib.image as mpimg

import keras# 导入Keras

from keras.datasets import mnist# 从keras中导入mnist数据集

from keras.models import Sequential# 导入序贯模型

from keras.layers import Dense# 导入全连接层

from keras.optimizers import SGD

from keras.utils import to_categorical

from keras.models import Sequential

from keras.layers import Conv2D, MaxPool2D, Flatten, Dropout, Dense

from keras.losses import categorical_crossentropy

from keras.optimizers import Adadelta

from keras.datasetsimport cifar10

(x_img_train,y_label_train),(x_img_test,y_label_test)=cifar10.load_data()

print('train:',len(x_img_train))

print('test :',len(x_img_test))

print('train_image :',x_img_train.shape)

print('train_label :',y_label_train.shape)

print('test_image :',x_img_test.shape)

print('test_label :',y_label_test.shape)

#data=x_img_train[0]

def    Laplace_number(img):

outcome=0

    for k1in range(1,31):

for k2in range(1,31):

outcome=outcome+img[k1-1,k2]+img[k1,k2-1]+img[k1+1,k2]+img[k1,k2+1]-4*img[k1,k2]

return outcome

x_img=x_img_train[0]

x_img_grey=cv2.cvtColor(x_img, cv2.COLOR_BGR2GRAY)

x_img_matrix=np.asmatrix(x_img_grey)

#x_img_matrix.shape

x_number=Laplace_number(x_img_matrix)

x_img_laplace = cv2.Laplacian(x_img, -1,ksize=3)

x_img_laplace_grey = cv2.cvtColor(x_img_laplace, cv2.COLOR_BGR2GRAY)

x_img_laplace_grey.shape

x_img_laplace_matrix=np.asmatrix(x_img_laplace_grey)

x_laplace_number=Laplace_number(x_img_laplace_matrix)

print(x_number)

print(x_laplace_number)

n_row=2

n_col=2

i=1

plt.subplot(n_row, n_col, i)

plt.imshow(x_img)

plt.show()

i=i+1

plt.subplot(n_row, n_col, i)

plt.imshow(x_img_grey,cmap='Greys_r')

plt.show()

i=i+1

plt.subplot(n_row, n_col, i)

plt.imshow(x_img_laplace_matrix,cmap='Greys_r')

plt.show()

plt.subplot(2,2,1)

x_train_0_org=x_img_train[0,:,:,0:3]

plt.imshow(x_train_0_org)

plt.title('org')

plt.subplot(2,2,2)

x_train_0_org_bilateral=cv2.bilateralFilter(x_train_0_org,9,75,75)

x_train_0_org_bilateral_canny = cv2.Canny(x_train_0_org_bilateral,75,200)

plt.imshow(x_train_0_org_bilateral_canny)

plt.title('org_bilateral_canny')

plt.subplot(2,2,3)

x_train_0_org_laplace=cv2.Laplacian(x_train_0_org, -1,ksize=3)

x_train_0_org_laplace_grey = cv2.cvtColor(x_train_0_org_laplace, cv2.COLOR_BGR2GRAY)

plt.imshow(x_train_0_org_laplace_grey)

plt.title('org_laplace_grey')

plt.show()

n_row=5

n_col=3

for Kin range(n_row):

print(K)

plt.subplot(n_row,3, K*3+1)

x_train_0_org = x_img_train[K, :, :,0:3]

# img_adv_laplacian=cv2.Laplacian(img_adv_np, -1, ksize=3)

    plt.imshow(x_train_0_org)

# plt.axis["top", 'right'].set_visible(False)

    if (K==0):

plt.title('org')

plt.subplot(n_row,3, K*3+2)

x_train_0_org_bilateral = cv2.bilateralFilter(x_train_0_org,9,75,75)

x_train_0_org_bilateral_canny = cv2.Canny(x_train_0_org_bilateral,75,200)

plt.imshow(x_train_0_org_bilateral_canny)

if (K==0):

plt.title('org_bilateral_canny')

plt.subplot(n_row,3, K*3+3)

x_train_0_org_laplace = cv2.Laplacian(x_train_0_org, -1,ksize=3)

x_train_0_org_laplace_grey = cv2.cvtColor(x_train_0_org_laplace, cv2.COLOR_BGR2GRAY)

plt.imshow(x_train_0_org_laplace_grey)

if (K==0):

plt.title('org_laplace_grey')

plt.show()

x_train_new=np.zeros((50000,32,32,4))

for kin range(50000):

x_train_new[k, :, :,0:3] = x_img_train[k]

x_train_temp=x_img_train[k]

x_train_temp=cv2.bilateralFilter(x_train_temp,9,75,75)

x_train_temp = cv2.Canny(x_train_temp,75,200)

#x_train_temp = cv2.Laplacian(x_train_temp, -1, ksize=3)

#x_train_temp = cv2.cvtColor(x_train_temp, cv2.COLOR_BGR2GRAY)

    x_train_new[k, :, :,3] = x_train_temp

'''

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容