Elasticsearch查询语法

查询语法

  • match all query
{
  "query": {
    "match_all": {}
  }
}
  • define query number
{
  "query": {
    "match_all": {}
  },
  "from": 2,        // 从2条记录开始取
  "size": 4,        // 取4条数据
  "sort": {
    "studentNo": {  // 按studentNo字段升序
      "order": "asc"// 降序为desc
    }
  } 
}
  • term query
{
  "query": {
    "term": {
      "name": "诸葛亮"
    }
  }
}
  • bool query
{
  "query": {
    "bool": {
      "must": [    //与之对应的还有should must not
        {
          "term": {
            "classNo": "2"
          }
        },
        {
          "term": {
            "isLeader": "true"
          }
        }
      ]
    }
  }
}
  • ids query
{
  "query": {
    "ids": {
      "type": "student",
      "values": [
        "1",
        "2"
      ]
    }
  }
}
  • prefix query
{
  "query": {
    "prefix": {
      "name": "赵"
    }
  }
}
  • range query
{
  "query": {
    "range": {
      "age": {
        "gte": "18",     // 表示>=
        "lte": "20"      // 表示<=
      }
    }
  }
}
  • terms query
{
  "query": {
    "terms": {
      "studentNo": [
        "1",
        "3"
      ]
    }
  }
}
  • wildcard query
{
  "query": {
    "wildcard": {
      "name": "*亮"
    }
  }
}
  • regexp query
{
  "query": {
    "regexp": {
      "address": ".*长沙市.*"  // 这里的.号表示任意一个字符
    }
  }
}
  • term filter
{
  "filter": {               
    "term": {
      "name": "诸葛亮",
      "_cache" : true // 与query主要是这里的区别,可以设置数据缓存
    }
  }
}
  • bool filter
{
  "filter": {
    "bool": {
      "must": [
        {
          "term": {
            "classNo": "2"
          }
        },
        {
          "term": {
            "isLeader": "true"
          }
        }
      ]
    }
  }
}
  • and filter
{
  "filter": {
      "and": [
        {
          "term": {
            "classNo": "2"
          }
        },
        {
          "term": {
            "isLeader": "true"
          }
        }
      ]
  }
}
  • or filter
{
  "filter": {
      "or": [
        {
          "term": {
            "classNo": "2"
          }
        },
        {
          "term": {
            "isLeader": "true"
          }
        }
      ]
  }
}
  • esists filter
{
  "filter": {
    "exists": {
      "field": "address"
    }
  }
}
  • miss filter
{
  "filter": {
    "missing": {
      "field": "address"
    }
  }
}
  • prefix filter
{
  "filter": {
    "prefix": {
      "name": "赵"
    }
  }
}
  • range filter
{
  "filter": {
    "range": {
      "age": {
        "gte": "18",
        "lte": "20"
      }
    }
  }
  • terms filter
{
  "filter": {
    "terms": {
      "studentNo": [
        "1",
        "3"
      ]
    }
  }
}
  • regexp filter
{
  "filter": {
    "regexp": {
      "address": ".*长沙市.*"
    }
  }
}

聚合api
1.metric(度量聚合)多用于number计算
2.bucketing(桶聚合)类似与sql分组

  • 聚合api格式
"aggregations" : {                  // 表示聚合操作,可以使用aggs替代
    "<aggregation_name>" : {        // 聚合名,可以是任意的字符串。用做响应的key,便于快速取得正确的响应数据。
        "<aggregation_type>" : {    // 聚合类别,就是各种类型的聚合,如min等
            <aggregation_body>      // 聚合体,不同的聚合有不同的body
        }
        [,"aggregations" : { [<sub_aggregation>]+ } ]? // 嵌套的子聚合,可以有0或多个
    }
    [,"<aggregation_name_2>" : { ... } ]* // 另外的聚合,可以有0或多个
}

度量聚合

  • min agg
"aggs": {
    "min_age": {
      "min": {
        "field": "age"
      }
    }
}
  • max agg
"aggs": {
    "max_age": {
      "max": {
        "field": "age"
      }
    }
}
  • sum agg
  "aggs": {
    "sum_age": {
      "sum": {
        "field": "age"
      }
    }
  }
  • avg agg
 "aggs": {
    "avg_age": {
      "avg": {
        "field": "age"
      }
    }
  }
  • stats agg
 "aggs": {
    "stats_age": {
      "stats": {
        "field": "age"
      }
    }
  }
  • top hits agg
 "aggs": {
    "top_age": {
      "top_hits": {
        "sort": [               // 排序
          {
            "age": {            // 按年龄降序
              "order": "desc"
            }
          }
        ],
        "_source": {
          "include": [           // 指定返回字段
            "name",
            "age"
          ]
        },
        "size": 2                 // 取前2条数据
      }
    }
  }

桶聚合

  • terms agg
  "aggs": {
    "terms_classNo": {
      "terms": {
        "field": "classNo",            // 按照班号进行分组
        "order": {                     // 按学生数从大到小排序
          "_count": "desc"
        },
        "size": 2                      // 取前两名
      }
    }
  }
  • range agg
  "aggs": {
    "range_age": {
      "range": {
        "field": "age",
        "ranges": [
          {
            "to": 15
          },
          {
            "from": "16",
            "to": "18"
          },
          {
            "from": "19",
            "to": "21"
          },

          {
            "from": "22",
            "to": "24"
          },
          {
            "from": "25"
          }
        ]
      }
    }
  }
  • date range agg
  "aggs": {
    "range_age": {
      "date_range": {
        "field": "birthday",
        "ranges": [
          {
            "to": "now-25y"
          }
        ]
      }
    }
  }
  • histogram agg
"aggs": {
    "histogram_age": {
      "histogram": {
        "field": "age",
        "interval": 2,               // 距离为2
        "min_doc_count": 1           // 只返回记录数量大于等于1的区间
      }
    }
  }
  • date histogram agg
"aggs": {
    "data_histogram_birthday": {
      "date_histogram": {
        "field": "birthday",
        "interval": "year",              // 按年统计
        "format": "yyyy"                 // 返回结果的key的格式
      }
    }
  }
  • missing agg
 "aggs": {
    "missing_address": {
      "missing": {
        "field": "address"
      }
    }
  }
  • 嵌套查询班内年龄最大的
 "aggs": {
    "missing_address": {
      "terms": {
        "field": "classNo"
      },
      "aggs": {                 // 在这里嵌套新的子聚合
        "max_age": {
          "max": {              // 使用max聚合
            "field": "age"
          }
        }
      }
    }
  }

压缩存储算法:

term index fst算法:字母前缀匹配

多个field倒排索引:bitmaps 按位与运算

  1. Roaring bitmaps

[1,3,4,7,10] [1,0,1,1,0,0,1,0,0,1]

增量编码压缩算法:从小到大排列,数据增量存储

监控元数据;

get /index/_search
_settings
_segments
_stats
_flush
_refresh

​ _count
​ _mapping

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,053评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,527评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,779评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,685评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,699评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,609评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,989评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,654评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,890评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,634评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,716评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,394评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,976评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,950评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,191评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,849评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,458评论 2 342

推荐阅读更多精彩内容