微积分七讲

上册有三讲:极限、一元函数微分学、一元函数积分学;下册有四讲:多元微分学、二重积分、微分方程、无穷级数。


第一讲极限。

核心考点有三。

一、极限的定义及性质。函数极限和数列极限定义学会数学翻译,所有极限的成立,都是在取值范围内的;

掌握递推法(高阶到低阶);数学归纳法(从低阶到高阶)。

讨论一个函数在定义域上的有界性;

二、重点是极限计算。十六字方针:化简先行、判别类型、使用工具、注意事项。

化简先行中等价无穷小替换中"抓大头",注意找“带头大哥”(多项加加减减,找最大的那项,把其他项都甩掉);离铅垂渐近线走得越近的人其实跑无穷大越慢;恒等变形中数学上不喜欢金字塔,因其极其稳定,头重脚轻根蒂浅;

判别类型中只有7种未定式。0·∞型设置分母有原则,简单分母才下放;∞-∞型没有分母,创造分母。

使用工具中慎用洛必达,洛必达法则是求导的结果存在,原式才存在。带着参数求导的结果你不知道是几。若洛必达失效,反思一下准备工作有没有做好(化简);在泰勒眼中所有函数都是幂函数,包括变上限积分函数。

注意事项是指总结经验教训。

含参数的极限综合题加强训练。

数列极限计算:归结原则、夹逼准则、单调有界准则(注意数学归纳法)。

三、极限的应用——连续与间断。


第二、三讲 一元函数微积分学。

核心考点有四。

一、定义:导数、微分、不定积分、定积分、变限积分、反常积分。

原函数存在定理:看一个函数是否有不定积分,盯着"连续与间断";

函数可积:看一个函数是否有定积分,盯着函数在有限区间上有界且只有有限个间断点;

根据被积函数图像画变限积分函数的图像,后者斜率是前者的值,后者函数值对应前者上面的面积。

函数的奇偶性、周期性、有界性(证谁有界,给谁加绝对值;证有界,最后结果都是常数,不能有变量)。

定积分精确定义。

变限积分属于定积分范畴,实质上是取决于x的一个动的面积;变限积分求导公式使用前提:被积函数中只含积分变量,不含求导变量。

反常积分是定积分之拓展,分为无穷区间上的反常积分和无界函数的反常积分;判断反常积分的关键:看奇点;判断反常积分是否收敛关键:看曲线和直线的接近程度(离水平渐进线越近,趋向于0的速度越快;离铅垂渐进线越远,跑无穷大的速度越快),P积分必考无疑。

二、计算。

1、积分。

基本积分公式:三角函数10个、分母开方的4个、分母不开方的4个。(对数函数求导视绝对值而不见)

步骤:普京抓主要矛盾求导凑微分;若凑微分失效,针对复杂部分作换元处理,先考虑微观换元法;举重若轻,宏观换元法。

华里式公式(点火公式)证明;一个题目结合区间再现公式、换元、点火(华里士)公式。

2、求导。

一般题:复合函数求导、隐函数求导、参数方程求导、反函数求导、对数求导法、分段函数求导;

高阶题:泰勒和麦克劳林、莱布妮子(考得少)。

三、应用。

1、几何应用。

①导数性态——三点两性一线:极值点与单调性、拐点与凹凸性、渐进线、最值点。

极值点和拐点的判别法一都是看一个点的左右两边导数符号,判别法二都是盯着一个点看,判别法二要会证明;(求拐点注意抓主要矛盾)

渐近线求解程序有三,其中第一点求定义域是关键,后两步关键是极限计算!

求一元函数最值——闭区间上比较驻点、不可导点、端点函数值;开区间上不能取端点取极限值。最后比较时涉及到函数计算,如计算三角函数值,注意看图说话,如背过正弦函数在【0,π】上的四等分面积。

②积分(测度)

平面图形面积、旋转体体积、平均值。

难点在于计算,任何一道编好的考研题,都有能力把图像画出来(导数性态)。


四、逻辑(证明)

中值定理、不等式证明、方程根(等式证明)


第四讲 多元函数微分学

核心考点有三。

一、概念5个

1、极限的存在性:两个定义;三种方法:等价无穷小替换、无穷小·有界=无穷小、夹逼准则。

2、连续性

3、偏导数存在性

4、可微

5、偏导数的连续性

二、计算-微分法

三、应用-极值与最值:无条件极值与点儿塔法;条件最值与拉格朗日乘数法。

对计算二元函数的极限和全微分有了更深刻的认识和掌握,拉格朗日乘数法关键是计算。


第五讲 二重积分

核心考点有三。

一、概念与对称性。二重积分看作是一个个薯条组成的大面包;对称性分普通对称性与轮换对称性,轮换对称性只是"积分值与字母无关"的特例、巧合。

二、计算。

1、基础题。直角坐标系、极坐标系

2、技术题。换序、对称性、形心公式的逆用。

三、综合题。


第六讲  微分方程

核心考点有三。按类求解,对号入座。

一、一阶方程:可分离变量型、齐次型、一阶线性型、可降阶

求解中出现对数,其真数要带绝对值符号。

可降阶微分方程通过换元变形成其他三种形式的微分方程,尤其是转化成一阶线性型再求解。

二、高阶方程:二阶常系数齐次线性方程、非齐次

对于高阶方程除了会正向求解外,要掌握已知特解反求方程(逆向思维)。

三、应用题。

背景公平;翻译成数学表达式。

另今天接触到牛顿-莱布尼茨公式的逆用:将一个数写成定积分的形式,这种逆向思想令人感到惊艳。


第七讲 无穷级数

核心考点有三。

一、数项级数的判敛。

1、概念(本质):无穷级数本质是研究通项在n趋于无穷大时趋于0的速度,对比无穷区间上反常积分收敛时高"无穷小的程度";

2、分类:(常)数项级数-正项级数、交错级数、任意项级数

函数项级数-幂级数

3、数项级数的判敛

①正项级数的判敛:

收敛原则,抽象级数判敛,写其前n项和,证其有界 ,难的是放缩法;

正项级数比较判别法;

比较判别法的极限形式和P级数是重点;P级数和1到无穷大区间上的P积分对比,一个是离散累加,一个是连续累加。

比值判别法;

根值判别法。

②交错级数的判敛:莱布尼茨判别法;

③任意项级数判绝对收敛;

连续放缩的递推法。

二、幂级数的收敛域。

三、展开与求和。

1、幂级数展开分为直接展开(照着6个公式套)和间接展开(先变形)。

2、先导后积的推导。

求和函数先导后积中有嵌套的先导后积,注意换字母以区分各变量;具体求结果时便是硬基础——定积分的计算(时刻注意对数的真数为正);

幂级数的展开与求和各重做一道错题。发现还是出错。每次自己独立动脑做题都会发现意外惊喜——新错误。只有自己动笔做而非直接听或看答案,才能真正理解题目的内涵。做过很多遍的题,看起来简单,但还会出错说明要脚踏实地,不能眼高手低。踏踏实实砌好每一块砖。学一个知识点就是学成千上万个知识。

高数下册微分方程及无穷级数是上册极限与微积分的具体运用,计算过程处处跟上册有密切联系。一些题目只是套上级数的外衣。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,362评论 5 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,330评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,247评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,560评论 1 273
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,580评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,569评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,929评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,587评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,840评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,596评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,678评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,366评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,945评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,929评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,165评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,271评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,403评论 2 342

推荐阅读更多精彩内容

  • 考试科目:高等数学、线性代数、概率论与数理统计 考试形式和试卷结构 一、试卷满分及考试时间 试卷满分为150分,考...
    Saudade_lh阅读 1,073评论 0 0
  • 2017年考研数学一大纲原文 考试科目:高等数学、线性代数、概率论与数理统计 考试形式和试卷结构 一、试卷满分及考...
    SheBang_阅读 618评论 0 7
  • 考试形式和试卷结构一、试卷满分及考试时间 试卷满分为150分,考试时间为180分钟 二、答题方式 答题方式为闭卷、...
    幻无名阅读 744评论 0 3
  • 微积分共七讲,其中上册有三讲:极限、一元函数微分学、一元函数积分学;下册有四讲:多元微分学、二重积分、微分方程、无...
    苏醒7阅读 2,165评论 3 5
  • 真的步履艰难。每个代码都要翻来覆去的看,最大的障碍,英语单词。转眼就忘,在我这里多么生动,多么令人沮丧!年轻的朋友...
    7300T阅读 417评论 0 2