Python-科学计算-seaborn-01-矩阵图

微信公众号原文

系统:Windows 7
语言版本:Anaconda3-4.3.0.1-Windows-x86_64
编辑器:pycharm-community-2016.3.2

  • 这个系列讲讲Python的科学计算版块
  • 今天讲讲seaborn模块:做几个点的矩阵图

Part 1:示例

  1. 已知df_1,有4列["p1", "p2", "p3", "from"]
  2. 做出P1、P2、P3三列的相关性图,其实就是两两的散点图,效果如下图
  3. 映射实例:有4种样本,每种样本采集5个,合计20个样本。每个样本检测其中3个控制点的数据,对这些数据进行可视化显示,合计数据量20*3=60个

矩阵图

1.png

Part 2:代码

import pandas as pd
import seaborn as sns
from matplotlib import pyplot as plt

dict_1 = {
          "p1": [0.5, 0.8, 1.0, 1.2, 1.5, 2.5, 0.9, 0.6, 1.3, 1.0,
                 1.3, 1.6, 1.9, 2.5, 4.2, 3.5, 2.2, 1.2, 1.5, 0.5],
          "p2": [1.3, 2.8, 1.3, 1.4, 6.5, 2.5, 0.9, 0.6, 1.3, 1.0,
                 1.3, 1.6, 1.9, 2.5, 4.2, 3.5, 1.2, 1.2, 3.5, 2.5],
          "p3": [2.5, 0.8, 1.3, 1.2, 1.5, 2.8, 1.9, 0.6, 1.3, 1.1,
                 1.3, 1.6, 1.1, 2.5, 4.2, 3.9, 2.2, 1.2, 1.5, 0.5],
          "from": ["sample1", "sample1", "sample1", "sample1", "sample1", 
                   "sample2", "sample2", "sample2", "sample2", "sample2",
                   "sample3", "sample3", "sample3", "sample3", "sample3",
                   "sample4", "sample4", "sample4", "sample4", "sample4"]}


df_1 = pd.DataFrame(dict_1, columns=["p1", "p2", "p3", "from"])

print(df_1)

sns.set(style="ticks", color_codes=True)

g = sns.pairplot(df_1,
                 hue="from",  # 设置颜色列
                 palette="Set1",  # 调色板:husl / Set1
                 markers=["o", "s", "D", "^"],  # 设置标记marker形状
                 vars=["p1", "p2", "p3"])
leg = g._legend
leg.set_bbox_to_anchor([0.5, 0, 0.5, 0.5])

plt.show()

代码截图

2.png

df_1

3.png

Part 3:部分代码解读

g = sns.pairplot(df_1,
                 hue="from",  # 设置颜色列
                 palette="Set1",  # 调色板:husl / Set1
                 markers=["o", "s", "D", "^"],  # 设置标记marker形状
                 vars=["p1", "p2", "p3"])
  1. df_1数据源
  2. hue设置已哪一列作为颜色的分类
  3. palette设置颜色板,可以有多种不同的风格,如设置为 husl,效果如下图
  4. markers设置每个数据的标记形状
  5. vars设置参与显示的列,如果更改为vars=["p1", "p2"],效果如下图

husl效果图

4-husl.png

vars=["p1", "p2"]

5-P1P2.png

本文为原创作品,欢迎分享朋友圈

长按图片识别二维码,关注本公众号
Python 优雅 帅气


12x0.8.jpg
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 218,525评论 6 507
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,203评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,862评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,728评论 1 294
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,743评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,590评论 1 305
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,330评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,244评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,693评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,885评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,001评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,723评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,343评论 3 330
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,919评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,042评论 1 270
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,191评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,955评论 2 355

推荐阅读更多精彩内容