小鬼的WGCNA图文详解(六)-visualize a weighted network

还是老习惯,给出官网教程,至于你是看还是不看,它就在那里,等着你的深入研究~

https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/

WGCNA分析图文详解专题中要解释的第五张图,加权共表达网络的可视化。

image.png

官方注释:

Figure 1: Visualizing the gene network using a heatmap plot. The heatmap depicts the Topological Overlap Matrix(TOM) among all genes in the analysis. Light color represents low overlap and progressively darker red color represents higher overlap. Blocks of darker colors along the diagonal are the modules. The gene dendrogram and module assignment are also shown along the left side and the top.

关于这个WGCNA图文详解,我们已经讲了五期了。可能你对co-expression network是什么还没有一点具体的概念。那么,此图正好可以揭开加权共表达网络的神秘面纱,让你一睹真容。没错,这个图就是对加权共表达网络的一个可视化,只不过是以热图的形式进行展示。下面我们来一一剖析这张图。如有理解错误,还请各位大侠批评指正。

图剖依然成以下几个部分:

  • 1,聚类树
  • 2,热图

小面我们来一一解读。

1,聚类树

image.png

还记得以前第三期教程么,没错,这个聚类树就是那个聚类树搬到了这里。
回顾:聚类树使用的TOM矩阵对所有基因进行的聚类然后得到的模块。
详细请看第三期教程Cluster Dendrogram图

2,热图
官方说明:

One way to visualize a weighted network is to plot its heatmap, Fig. 1. Each row and column of the heatmap correspond to a single gene. The heatmap can depict adjacencies or topological overlaps, with light colors denoting low adjacency (overlap) and darker colors higher adjacency (overlap). In addition, the gene dendrograms and module colors are plotted along the top and left side of the heatmap.

其实就是对TOM矩阵的一个可视化。这张图来源于官方教程,作者使用了3600个基因进行WGCNA分析。TOM矩阵就是一个3600*3600的矩阵,里面保存这每两个基因之间表达值的相关性值。因此,热图的每一行和每一列都表示一个基因,是一个对称矩阵。

核心代码:

# calculated during module detection, but let us do it again here.
dissTOM = 1-TOMsimilarityFromExpr(datExpr, power = 6);

# Transform dissTOM with a power to make moderately strong connections more visible in the heatmap
plotTOM = dissTOM^7;

# Set diagonal to NA for a nicer plot
diag(plotTOM) = NA;

# Call the plot function
sizeGrWindow(9,9)
TOMplot(plotTOM, geneTree, moduleColors, main = "Network heatmap plot, all genes")
image.png

与一般的热图颜色含义类似,这里颜色越深,表示两个基因之间的相关性越大,颜色越浅表示相关性越小。

热图的对角线可以看出有一些深颜色的模块,就是相关性大的基因聚类成的模块,每一个色块都都是一个模块,与旁边的聚类树底下的模块对应。

可以很明显的看出,模块内部的基因相关性很大。除此之外,其实,还可以看出模块与模块之间也是有关联而不是相互独立的。

今天就说到这里,欢迎大家留言讨论。我们下期再见~

参考资料:
1,https://horvath.genetics.ucla.edu/html/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/
2,A General Framework for Weighted Gene Co-Expression Network Analysis, Stat Appl Genet Mol Biol. 2005;4:Article17. Epub 2005 Aug 12

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,588评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,456评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,146评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,387评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,481评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,510评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,522评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,296评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,745评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,039评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,202评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,901评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,538评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,165评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,415评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,081评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,085评论 2 352

推荐阅读更多精彩内容