【r<-算法】倾向评分匹配算法——R实例学习

倾向评分算法用于校正模型中的混淆因子,这里我们先使用随机生成的数据学习该算法,然后实际分析一下去教会学校和公共学校上学学生的成绩差异。

学习

According to Wikipedia, propensity score matching (PSM) is a “statistical matching technique that attempts to estimate the effect of a treatment, policy, or other intervention by accounting for the covariates that predict receiving the treatment”. In a broader sense, propensity score analysis assumes that an unbiased comparison between samples can only be made when the subjects of both samples have similar characteristics. Thus, PSM can not only be used as “an alternative method to estimate the effect of receiving treatment when random assignment of treatments to subjects is not feasible” (Thavaneswaran 2008). It can also be used for the comparison of samples in epidemiological studies.

创建两个随机数据框

数据框#1:

library(wakefield)
set.seed(1234)
df.patients <- r_data_frame(n = 250, 
                            age(x = 30:78, 
                                name = 'Age'), 
                            sex(x = c("Male", "Female"), 
                                prob = c(0.70, 0.30), 
                                name = "Sex"))
df.patients$Sample <- as.factor('Patients')

查看下描述性统计量:

summary(df.patients)
##       Age           Sex           Sample   
##  Min.   :30.0   Male  :173   Patients:250  
##  1st Qu.:42.0   Female: 77                 
##  Median :54.0                              
##  Mean   :53.7                              
##  3rd Qu.:66.0                              
##  Max.   :78.0

the mean age of the patient sample is 53.7 and roughly 70% of the patients are male (69.2%).

数据框#2:

set.seed(1234)
df.population <- r_data_frame(n = 1000, 
                              age(x = 18:80, 
                                  name = 'Age'), 
                              sex(x = c("Male", "Female"), 
                                  prob = c(0.50, 0.50), 
                                  name = "Sex"))
df.population$Sample <- as.factor('Population')

上面这个数据框用来模拟总体情况。

summary(df.population)
##       Age           Sex             Sample    
##  Min.   :18.0   Male  :485   Population:1000  
##  1st Qu.:34.0   Female:515                    
##  Median :50.0                                 
##  Mean   :49.5                                 
##  3rd Qu.:65.0                                 
##  Max.   :80.0

融合数据框

mydata <- rbind(df.patients, df.population)
mydata$Group <- as.logical(mydata$Sample == 'Patients')
mydata$Distress <- ifelse(mydata$Sex == 'Male', age(nrow(mydata), x = 0:42, name = 'Distress'),
                                                age(nrow(mydata), x = 15:42, name = 'Distress'))

当我们两个样本中比较年龄和性别时会发现差异:

pacman::p_load(tableone)
table1 <- CreateTableOne(vars = c('Age', 'Sex', 'Distress'), 
                         data = mydata, 
                         factorVars = 'Sex', 
                         strata = 'Sample')
table1 <- print(table1, 
                printToggle = FALSE, 
                noSpaces = TRUE)
knitr::kable(table1[,1:3],  
      align = 'c', 
      caption = 'Comparison of unmatched samples')
Patients Population p
n 250 1000
Age (mean (sd)) 53.71 (13.88) 49.46 (18.33) 0.001
Sex = Female (%) 77 (30.8) 515 (51.5) <0.001
Distress (mean (sd)) 22.86 (11.38) 25.13 (11.11) 0.004

在总体中,distress更高。

匹配样本

Now that we have completed preparation and inspection of data, we are going to match the two samples using the matchit-function of the MatchIt package. The method command method=“nearest” specifies that the nearest neighbors method will be used. Other matching methods are exact matching, subclassification, optimal matching, genetic matching, and full matching (method = c(“exact”, “subclass”, “optimal”, “”genetic“,”full“)). The ratio command ratio = 1 indicates a one-to-one matching approach. With regard to our example, for each case in the patient sample exactly one case in the population sample will be matched. Please also note that the Group variable needs to be logic (TRUE vs. FALSE).

library(MatchIt)
set.seed(1234)
match.it <- matchit(Group ~ Age + Sex, data = mydata, method="nearest", ratio=1)
a <- summary(match.it)

For further data presentation, we save the output of the summary-function into a variable named a.

After matching the samples, the size of the population sample was reduced to the size of the patient sample (n=250; see table 2).

knitr::kable(a$nn, digits = 2, align = 'c', 
      caption = 'Sample sizes')
Control Treated
All 1000 250
Matched 250 250
Unmatched 750 0
Discarded 0 0

The following output shows, that the distributions of the variables Age and Sex are nearly identical after matching.

knitr::kable(a$sum.matched[c(1,2,4)], digits = 2, align = 'c', 
      caption = 'Summary of balance for matched data')
Means Treated Means Control Mean Diff
distance 0.23 0.23 0.00
Age 53.71 53.65 0.06
SexMale 0.69 0.69 0.00
SexFemale 0.31 0.31 0.00

The distributions of propensity scores can be visualized using the plot-function which is part of the MatchIt package .

plot(match.it, type = 'jitter', interactive = FALSE)
img

保存匹配样本

df.match <- match.data(match.it)[1:ncol(mydata)]
rm(df.patients, df.population)

Eventually, we can check whether the differences in the level of distress between both samples are still significant.

pacman::p_load(tableone)
table4 <- CreateTableOne(vars = c('Age', 'Sex', 'Distress'), 
                         data = df.match, 
                         factorVars = 'Sex', 
                         strata = 'Sample')
table4 <- print(table4, 
                printToggle = FALSE, 
                noSpaces = TRUE)
knitr::kable(table4[,1:3],  
      align = 'c', 
      caption = 'Table 4: Comparison of matched samples')
Patients Population p
n 250 250
Age (mean (sd)) 53.71 (13.88) 53.65 (13.86) 0.961
Sex = Female (%) 77 (30.8) 77 (30.8) 1.000
Distress (mean (sd)) 22.86 (11.38) 24.13 (11.88) 0.222

With a p-value of 0.222, Student’s t-test does not indicate significant differences anymore. Thus, PSM helped to avoid an alpha mistake.

实例

在学习实例之前,导入分析需要用的包:

library(dplyr)
## 
## 载入程辑包:'dplyr'
## The following object is masked from 'package:wakefield':
## 
##     id
## The following objects are masked from 'package:stats':
## 
##     filter, lag
## The following objects are masked from 'package:base':
## 
##     intersect, setdiff, setequal, union
library(ggplot2)
library(MatchIt)

导入数据:

ecls = read.csv("../../R/dataset/ecls-master/data-processed/ecls.csv")

使用非匹配数据进行预分析

ecls %>%
  group_by(catholic) %>%
  summarise(n_students = n(),
            mean_math = mean(c5r2mtsc_std),
            std_error = sd(c5r2mtsc_std) / sqrt(n_students))
## # A tibble: 2 x 4
##   catholic n_students mean_math std_error
##      <int>      <int>     <dbl>     <dbl>
## 1        0       9568   -0.0306    0.0104
## 2        1       1510    0.194     0.0224
ecls %>%
  mutate(test = (c5r2mtsc - mean(c5r2mtsc)) / sd(c5r2mtsc)) %>% #this is how the math score is standardized
  group_by(catholic) %>%
  summarise(mean_math = mean(test))
## # A tibble: 2 x 2
##   catholic mean_math
##      <int>     <dbl>
## 1        0   -0.0306
## 2        1    0.194

检验差异:

with(ecls, t.test(c5r2mtsc_std ~ catholic))
## 
##  Welch Two Sample t-test
## 
## data:  c5r2mtsc_std by catholic
## t = -9, df = 2000, p-value <2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.273 -0.176
## sample estimates:
## mean in group 0 mean in group 1 
##         -0.0306          0.1939

协变量探索

We’ll work with the following covariates for now:

  • race_white: Is the student white (1) or not (0)?
  • p5hmage: Mother’s age
  • w3income: Family income
  • p5numpla: Number of places the student has lived for at least 4 months
  • w3momed_hsb: Is the mother’s education level high-school or below (1) or some college or more (0)?

Let’s calculate the mean for each covariate by the treatment status:

ecls_cov <- c('race_white', 'p5hmage', 'p5numpla', 'w3momed_hsb')
ecls %>%
  group_by(catholic) %>%
  select(one_of(ecls_cov)) %>%
  summarise_all(funs(mean(., na.rm = T)))
## Adding missing grouping variables: `catholic`
## # A tibble: 2 x 5
##   catholic race_white p5hmage p5numpla w3momed_hsb
##      <int>      <dbl>   <dbl>    <dbl>       <dbl>
## 1        0         0.    37.6     1.13          0.
## 2        1         0.    39.6     1.09          0.

检验:

lapply(ecls_cov, function(v) {
    t.test(ecls[, v] ~ ecls[, 'catholic'])
})
## [[1]]
## 
##  Welch Two Sample t-test
## 
## data:  ecls[, v] by ecls[, "catholic"]
## t = NaN, df = NaN, p-value = NA
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  NaN NaN
## sample estimates:
## mean in group 0 mean in group 1 
##               0               0 
## 
## 
## [[2]]
## 
##  Welch Two Sample t-test
## 
## data:  ecls[, v] by ecls[, "catholic"]
## t = -10, df = 2000, p-value <2e-16
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -2.33 -1.70
## sample estimates:
## mean in group 0 mean in group 1 
##            37.6            39.6 
## 
## 
## [[3]]
## 
##  Welch Two Sample t-test
## 
## data:  ecls[, v] by ecls[, "catholic"]
## t = 4, df = 2000, p-value = 2e-05
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  0.0215 0.0584
## sample estimates:
## mean in group 0 mean in group 1 
##            1.13            1.09 
## 
## 
## [[4]]
## 
##  Welch Two Sample t-test
## 
## data:  ecls[, v] by ecls[, "catholic"]
## t = NaN, df = NaN, p-value = NA
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  NaN NaN
## sample estimates:
## mean in group 0 mean in group 1 
##               0               0

倾向分估计

m_ps <- glm(catholic ~ race_white + p5hmage + p5numpla + w3momed_hsb,
            family = binomial(), data = ecls)
summary(m_ps)
## 
## Call:
## glm(formula = catholic ~ race_white + p5hmage + p5numpla + w3momed_hsb, 
##     family = binomial(), data = ecls)
## 
## Deviance Residuals: 
##    Min      1Q  Median      3Q     Max  
## -1.166  -0.587  -0.528  -0.463   2.305  
## 
## Coefficients: (2 not defined because of singularities)
##             Estimate Std. Error z value Pr(>|z|)    
## (Intercept) -3.28365    0.20921  -15.70   <2e-16 ***
## race_white        NA         NA      NA       NA    
## p5hmage      0.04582    0.00444   10.33   <2e-16 ***
## p5numpla    -0.22521    0.09059   -2.49    0.013 *  
## w3momed_hsb       NA         NA      NA       NA    
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## (Dispersion parameter for binomial family taken to be 1)
## 
##     Null deviance: 7701.3  on 9266  degrees of freedom
## Residual deviance: 7583.5  on 9264  degrees of freedom
##   (1811 observations deleted due to missingness)
## AIC: 7589
## 
## Number of Fisher Scoring iterations: 4
prs_df <- data.frame(pr_score = predict(m_ps, type = "response"),
                     catholic = m_ps$model$catholic)
head(prs_df)
##   pr_score catholic
## 1    0.205        0
## 2    0.164        0
## 4    0.177        0
## 5    0.146        1
## 6    0.205        0
## 7    0.106        0
labs <- paste("Actual school type attended:", c("Catholic", "Public"))
prs_df %>%
  mutate(catholic = ifelse(catholic == 1, labs[1], labs[2])) %>%
  ggplot(aes(x = pr_score)) +
  geom_histogram(color = "white") +
  facet_wrap(~catholic) +
  xlab("Probability of going to Catholic school") +
  theme_bw()
## `stat_bin()` using `bins = 30`. Pick better value with `binwidth`.
img

执行匹配算法

ecls_nomiss <- ecls %>%  # MatchIt does not allow missing values
  select(c5r2mtsc_std, catholic, one_of(ecls_cov)) %>%
  na.omit()

mod_match <- matchit(catholic ~ race_white + p5hmage + p5numpla + w3momed_hsb,
                     method = "nearest", data = ecls_nomiss)
dta_m <- match.data(mod_match)
dim(dta_m)
## [1] 2704    8

检查匹配样本中协变量的平衡

fn_bal <- function(dta, variable) {
  dta$variable <- dta[, variable]
  if (variable == 'w3income') dta$variable <- dta$variable / 10^3
  dta$catholic <- as.factor(dta$catholic)
  support <- c(min(dta$variable), max(dta$variable))
  ggplot(dta, aes(x = distance, y = variable, color = catholic)) +
    geom_point(alpha = 0.2, size = 1.3) +
    geom_smooth(method = "loess", se = F) +
    xlab("Propensity score") +
    ylab(variable) +
    theme_bw() +
    ylim(support)
}

library(gridExtra)
## 
## 载入程辑包:'gridExtra'
## The following object is masked from 'package:dplyr':
## 
##     combine
grid.arrange(
   fn_bal(dta_m, "p5numpla") + theme(legend.position = "none"),
   fn_bal(dta_m, "p5hmage"),
   fn_bal(dta_m, "w3momed_hsb") + theme(legend.position = "none"),
   fn_bal(dta_m, "race_white"),
   nrow = 2, widths = c(1, 0.8)
)
## Warning: Removed 41 rows containing missing values (geom_smooth).
## Warning: Removed 1 rows containing missing values (geom_smooth).
img

均值差异

dta_m %>%
  group_by(catholic) %>%
  select(one_of(ecls_cov)) %>%
  summarise_all(funs(mean))
## Adding missing grouping variables: `catholic`
## # A tibble: 2 x 5
##   catholic race_white p5hmage p5numpla w3momed_hsb
##      <int>      <dbl>   <dbl>    <dbl>       <dbl>
## 1        0         0.    39.6     1.09          0.
## 2        1         0.    39.6     1.09          0.

检验:

lapply(ecls_cov, function(v) {
    t.test(dta_m[, v] ~ dta_m$catholic)
})
## [[1]]
## 
##  Welch Two Sample t-test
## 
## data:  dta_m[, v] by dta_m$catholic
## t = NaN, df = NaN, p-value = NA
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  NaN NaN
## sample estimates:
## mean in group 0 mean in group 1 
##               0               0 
## 
## 
## [[2]]
## 
##  Welch Two Sample t-test
## 
## data:  dta_m[, v] by dta_m$catholic
## t = -0.06, df = 3000, p-value = 1
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.405  0.383
## sample estimates:
## mean in group 0 mean in group 1 
##            39.6            39.6 
## 
## 
## [[3]]
## 
##  Welch Two Sample t-test
## 
## data:  dta_m[, v] by dta_m$catholic
## t = -0.2, df = 3000, p-value = 0.8
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  -0.0250  0.0206
## sample estimates:
## mean in group 0 mean in group 1 
##            1.09            1.09 
## 
## 
## [[4]]
## 
##  Welch Two Sample t-test
## 
## data:  dta_m[, v] by dta_m$catholic
## t = NaN, df = NaN, p-value = NA
## alternative hypothesis: true difference in means is not equal to 0
## 95 percent confidence interval:
##  NaN NaN
## sample estimates:
## mean in group 0 mean in group 1 
##               0               0

Average absolute standardized difference

As a measure of the average imbalance, we can calculate the following:

\bar{\left|\frac{\beta}{\sigma}\right|} = \frac{1}{k}\sum_x \frac{|\beta_x|}{\sigma_x}

where βx is the difference between the covariate means in the treated and control groups in the matched sample. An average absolute standardized difference that is close to 0 is preferable, since that indicates small differences between the control and treatment groups in the matched sample.

Try to implement a function that calculates the absolute standardized difference for any covariate in the matched sample. Then take the average for all the covariates.

评估治疗效应

Estimating the treatment effect is simple once we have a matched sample that we are happy with. We can use a t-test,Or we can use OLS with or without covariates。


参考:

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,100评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,308评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,718评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,275评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,376评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,454评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,464评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,248评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,686评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,974评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,150评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,817评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,484评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,140评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,374评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,012评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,041评论 2 351

推荐阅读更多精彩内容