多线程相关之GCD、死锁、dispatch_barrier_async、dispatch_group_async、Dispatch Semaphore、dispa...

推荐阅读:备战2020——iOS全新面试题总结

  • GCD---同步/异步 ,串行/并发
  • 死锁
  • GCD任务执行顺序
  • dispatch_barrier_async
  • dispatch_group_async
  • Dispatch Semaphore
  • 延时函数(dispatch_after)
  • 使用dispatch_once实现单例

一、GCD---队列

iOS中,有GCD、NSOperation、NSThread等几种多线程技术方案。

而GCD共有三种队列类型:
main queue:通过dispatch_get_main_queue()获得,这是一个与主线程相关的串行队列。

global queue:全局队列是并发队列,由整个进程共享。存在着高、中、低三种优先级的全局队列。调用dispath_get_global_queue并传入优先级来访问队列。

自定义队列:通过函数dispatch_queue_create创建的队列。

二、 死锁

死锁就是队列引起的循环等待

1、一个比较常见的死锁例子:主队列同步
- (void)viewDidLoad {
    [super viewDidLoad];

    dispatch_sync(dispatch_get_main_queue(), ^{

        NSLog(@"deallock");
    });
    // Do any additional setup after loading the view, typically from a nib.
}

在主线程中运用主队列同步,也就是把任务放到了主线程的队列中。
同步对于任务是立刻执行的,那么当把任务放进主队列时,它就会立马执行,只有执行完这个任务,viewDidLoad才会继续向下执行。
而viewDidLoad和任务都是在主队列上的,由于队列的先进先出原则,任务又需等待viewDidLoad执行完毕后才能继续执行,viewDidLoad和这个任务就形成了相互循环等待,就造成了死锁。
想避免这种死锁,可以将同步改成异步dispatch_async,或者将dispatch_get_main_queue换成其他串行或并行队列,都可以解决。

2、同样,下边的代码也会造成死锁:
dispatch_queue_t serialQueue = dispatch_queue_create("test", DISPATCH_QUEUE_SERIAL);

dispatch_async(serialQueue, ^{

        dispatch_sync(serialQueue, ^{

            NSLog(@"deadlock");
        });
    });

外面的函数无论是同步还是异步都会造成死锁。
这是因为里面的任务和外面的任务都在同一个serialQueue队列内,又是同步,这就和上边主队列同步的例子一样造成了死锁
解决方法也和上边一样,将里面的同步改成异步dispatch_async,或者将serialQueue换成其他串行或并行队列,都可以解决

    dispatch_queue_t serialQueue = dispatch_queue_create("test", DISPATCH_QUEUE_SERIAL);

    dispatch_queue_t serialQueue2 = dispatch_queue_create("test", DISPATCH_QUEUE_SERIAL);

    dispatch_async(serialQueue, ^{

        dispatch_sync(serialQueue2, ^{

            NSLog(@"deadlock");
        });
    });

这样是不会死锁的,并且serialQueue和serialQueue2是在同一个线程中的。

三、GCD任务执行顺序

1、串行队列先异步后同步
    dispatch_queue_t serialQueue = dispatch_queue_create("test", DISPATCH_QUEUE_SERIAL);

    NSLog(@"1");

    dispatch_async(serialQueue, ^{

         NSLog(@"2");
    });

    NSLog(@"3");

    dispatch_sync(serialQueue, ^{

        NSLog(@"4");
    });

    NSLog(@"5");

打印顺序是13245
原因是:
首先先打印1
接下来将任务2其添加至串行队列上,由于任务2是异步,不会阻塞线程,继续向下执行,打印3
然后是任务4,将任务4添加至串行队列上,因为任务4和任务2在同一串行队列,根据队列先进先出原则,任务4必须等任务2执行后才能执行,又因为任务4是同步任务,会阻塞线程,只有执行完任务4才能继续向下执行打印5
所以最终顺序就是13245。
这里的任务4在主线程中执行,而任务2在子线程中执行。
如果任务4是添加到另一个串行队列或者并行队列,则任务2和任务4无序执行(可以添加多个任务看效果)

2、performSelector
dispatch_async(dispatch_get_global_queue(0, 0), ^{

        [self performSelector:@selector(test:) withObject:nil afterDelay:0];
    });

这里的test方法是不会去执行的,原因在于

- (void)performSelector:(SEL)aSelector withObject:(nullable id)anArgument afterDelay:(NSTimeInterval)delay;

这个方法要创建提交任务到runloop上的,而gcd底层创建的线程是默认没有开启对应runloop的,所有这个方法就会失效。
而如果将dispatch_get_global_queue改成主队列,由于主队列所在的主线程是默认开启了runloop的,就会去执行(将dispatch_async改成同步,因为同步是在当前线程执行,那么如果当前线程是主线程,test方法也是会去执行的)。

四、dispatch_barrier_async

1、问:怎么用GCD实现多读单写?

多读单写的意思就是:可以多个读者同时读取数据,而在读的时候,不能去写入数据。并且,在写的过程中,不能有其他写者去写。即读者之间是并发的,写者与读者或其他写者是互斥的。

image

这里的写处理就是通过栅栏的形式去写。
就可以用dispatch_barrier_sync(栅栏函数)去实现

2、dispatch_barrier_sync的用法:
dispatch_queue_t concurrentQueue = dispatch_queue_create("test", DISPATCH_QUEUE_CONCURRENT);

    for (NSInteger i = 0; i < 10; i++) {

        dispatch_sync(concurrentQueue, ^{

            NSLog(@"%zd",i);
        });
    }

    dispatch_barrier_sync(concurrentQueue, ^{

        NSLog(@"barrier");
    });

    for (NSInteger i = 10; i < 20; i++) {

        dispatch_sync(concurrentQueue, ^{

            NSLog(@"%zd",i);
        });
    }

这里的dispatch_barrier_sync上的队列要和需要阻塞的任务在同一队列上,否则是无效的。
从打印上看,任务0-9和任务任务10-19因为是异步并发的原因,彼此是无序的。而由于栅栏函数的存在,导致顺序必然是先执行任务0-9,再执行栅栏函数,再去执行任务10-19。

  • dispatch_barrier_sync: Submits a barrier block object for execution and waits until that block completes.(提交一个栅栏函数在执行中,它会等待栅栏函数执行完)
  • dispatch_barrier_async: Submits a barrier block for asynchronous execution and returns immediately.(提交一个栅栏函数在异步执行中,它会立马返回)
    而dispatch_barrier_sync和dispatch_barrier_async的区别也就在于会不会阻塞当前线程
    比如,上述代码如果在dispatch_barrier_async后随便加一条打印,则会先去执行该打印,再去执行任务0-9和栅栏函数;而如果是dispatch_barrier_sync,则会在任务0-9和栅栏函数后去执行这条打印。
3、则可以这样设计多读单写:
- (id)readDataForKey:(NSString *)key
{
    __block id result;

    dispatch_sync(_concurrentQueue, ^{

        result = [self valueForKey:key];
    });

    return result;
}

- (void)writeData:(id)data forKey:(NSString *)key
{
    dispatch_barrier_async(_concurrentQueue, ^{

        [self setValue:data forKey:key];
    });
}

五、dispatch_group_async

场景:在n个耗时并发任务都完成后,再去执行接下来的任务。比如,在n个网络请求完成后去刷新UI页面。

dispatch_queue_t concurrentQueue = dispatch_queue_create("test1", DISPATCH_QUEUE_CONCURRENT);

    dispatch_group_t group = dispatch_group_create();

    for (NSInteger i = 0; i < 10; i++) {

        dispatch_group_async(group, concurrentQueue, ^{

            sleep(1);

            NSLog(@"%zd:网络请求",i);
        });
    }

    dispatch_group_notify(group, dispatch_get_main_queue(), ^{

        NSLog(@"刷新页面");
    });

深入理解GCD之dispatch_group
六、Dispatch Semaphore

GCD 中的信号量是指 Dispatch Semaphore,是持有计数的信号。

Dispatch Semaphore 提供了三个函数

1.dispatch_semaphore_create:创建一个Semaphore并初始化信号的总量
2.dispatch_semaphore_signal:发送一个信号,让信号总量加1
3.dispatch_semaphore_wait:可以使总信号量减1,当信号总量为0时就会一直等待(阻塞所在线程),否则就可以正常执行。

Dispatch Semaphore 在实际开发中主要用于:

  • 保持线程同步,将异步执行任务转换为同步执行任务
  • 保证线程安全,为线程加锁
1、保持线程同步:
dispatch_semaphore_t semaphore = dispatch_semaphore_create(0);

    __block NSInteger number = 0;

    dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIORITY_DEFAULT, 0), ^{

        number = 100;

        dispatch_semaphore_signal(semaphore);
    });

    dispatch_semaphore_wait(semaphore, DISPATCH_TIME_FOREVER);

    NSLog(@"semaphore---end,number = %zd",number);

dispatch_semaphore_wait加锁阻塞了当前线程,dispatch_semaphore_signal解锁后当前线程继续执行

2、保证线程安全,为线程加锁:

在线程安全中可以将dispatch_semaphore_wait看作加锁,而dispatch_semaphore_signal看作解锁
首先创建全局变量

 _semaphore = dispatch_semaphore_create(1);

注意到这里的初始化信号量是1。

- (void)asyncTask
{

    dispatch_semaphore_wait(_semaphore, DISPATCH_TIME_FOREVER);

    count++;

    sleep(1);

    NSLog(@"执行任务:%zd",count);

    dispatch_semaphore_signal(_semaphore);
}

异步并发调用asyncTask

  for (NSInteger i = 0; i < 100; i++) {

        dispatch_async(dispatch_get_global_queue(0, 0), ^{

            [self asyncTask];
        });
    }

然后发现打印是从任务1顺序执行到100,没有发生两个任务同时执行的情况。

原因如下:
在子线程中并发执行asyncTask,那么第一个添加到并发队列里的,会将信号量减1,此时信号量等于0,可以执行接下来的任务。而并发队列中其他任务,由于此时信号量不等于0,必须等当前正在执行的任务执行完毕后调用dispatch_semaphore_signal将信号量加1,才可以继续执行接下来的任务,以此类推,从而达到线程加锁的目的。

六、延时函数(dispatch_after)

dispatch_after能让我们添加进队列的任务延时执行,该函数并不是在指定时间后执行处理,而只是在指定时间追加处理到dispatch_queue

//第一个参数是time,第二个参数是dispatch_queue,第三个参数是要执行的block
    dispatch_after(dispatch_time(DISPATCH_TIME_NOW, (int64_t)(2 * NSEC_PER_SEC)), dispatch_get_main_queue(), ^{

        NSLog(@"dispatch_after");
    });

由于其内部使用的是dispatch_time_t管理时间,而不是NSTimer。
所以如果在子线程中调用,相比performSelector:afterDelay,不用关心runloop是否开启

七、使用dispatch_once实现单例

+ (instancetype)shareInstance {

    static dispatch_once_t onceToken;

    static id instance = nil;

    dispatch_once(&onceToken, ^{

        instance = [[self alloc] init];
    });

    return instance;
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 194,457评论 5 459
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 81,837评论 2 371
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 141,696评论 0 319
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 52,183评论 1 263
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 61,057评论 4 355
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 46,105评论 1 272
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 36,520评论 3 381
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 35,211评论 0 253
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 39,482评论 1 290
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 34,574评论 2 309
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 36,353评论 1 326
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 32,213评论 3 312
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 37,576评论 3 298
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 28,897评论 0 17
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 30,174评论 1 250
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 41,489评论 2 341
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 40,683评论 2 335