Given a binary search tree, write a function kthSmallest to find the kth smallest element in it.
Note:
You may assume k is always valid, 1 ? k ? BST's total elements.
Follow up:
What if the BST is modified (insert/delete operations) often and you need to find the kth smallest frequently? How would you optimize the kthSmallest routine?
一刷
题解:
第一种方法,先算出左子树的node数目,判断是否在左子树内,然后通过判断进入左右递归。
public int kthSmallest(TreeNode root, int k) {
int count = countNodes(root.left);
if (k <= count) {
return kthSmallest(root.left, k);
} else if (k > count + 1) {
return kthSmallest(root.right, k-1-count); // 1 is counted as current node
}
return root.val;
}
public int countNodes(TreeNode n) {
if (n == null) return 0;
return 1 + countNodes(n.left) + countNodes(n.right);
}
第二种方法:
可以很明显的看到,上一种方法中,有太多的重复计算,思考,我们可以用in-order遍历将这个数组存起来(从小到大),然后输出第k个
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public int kthSmallest(TreeNode root, int k) {
List<Integer> count = new ArrayList<>();
helper(root, count);
return count.get(k-1);
}
public void helper(TreeNode node, List<Integer>count){
if(node == null) return;
if(count.size() == k) return;
helper(node.left, count);
count.add(node.val);
helper(node.right, count);
}
}
三刷
速度太慢。方法同上。但是只记录第k个值。所以不需要用arraylist
/**
* Definition for a binary tree node.
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
class Solution {
private int val;
private int cnt;
public int kthSmallest(TreeNode root, int k) {
val = 0;
cnt = 0;
dfs(root, k);
return val;
}
private void inorder(TreeNode root, int k) {
if (root == null) {
return;
}
inorder(root.left, k);
if (cnt == k) {
return;
}
val = root.val;
cnt++;
inorder(root.right, k);
}
}