有关协同在互联网的运用

   看了几遍《协同学》总要写点什么出来,之前Runny(导师)针对2B服务协同以及商业业务协同有过两篇总结,看完清晰很多!

 下面我针对C端发表一些自己的看法。

一、基于用户协同

原理:基于用户对物品的喜好找到相似用户,然后将相似用户的物品推荐给目标用户。

举例:假设用户A喜欢物品A和物品C,用户B喜欢物品B,用户C喜欢物品A、物品C和物品D;从这些用户的历史喜好信息中,我们可以发现用户A和用户C的口味和偏好是比较类似的,同时用户C还喜欢物品D,那么我们可以推断用户A可能也喜欢物品D,因此可以将物品D推荐给用户A。

实现:将一个用户对所有物品的偏好作为一个变量来计算用户之间的相似度,找到相似用户后,根据相似度权重以及他们对物品的喜好,为目标用户生成一个排序的物品列表作为推荐,列表里面都是目标用户为涉及的物品。

二、基于物品协同

原理:基于用户对物品的喜好找到相似的物品,然后根据用户的历史喜好,推荐相似的物品给目标用户

举例:假设用户A喜欢物品A和物品C,用户B喜欢物品A、物品B和物品C,用户C喜欢物品A,从这些用户的历史喜好可以分析出物品A和物品C是比较类似的,喜欢物品A的人都喜欢物品C,基于这个数据可以推断用户C 很有可能也喜欢物品C,所以系统会将物品C推荐给用户C。

实现:将所有用户对某一个物品的喜好作为一个向量来计算物品之间的相似度,得到物品的相似物品后,根据用户历史的喜好预测目标用户还没有涉及的物品,计算得到一个排序的物品列表作为推荐。

-----------------------------------------------------------

综上所述,其实在阿里已经运用成型了,当然是基于它足够强的产品架构、基于它的大数据、基于它精准的算法把协同服务优势发挥的淋漓尽致。可以说,dt时代的协同服务是互联网的大势所趋(结尾粗字引用Runny

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 222,252评论 6 516
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,886评论 3 399
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 168,814评论 0 361
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,869评论 1 299
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,888评论 6 398
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,475评论 1 312
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 41,010评论 3 422
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,924评论 0 277
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,469评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,552评论 3 342
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,680评论 1 353
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 36,362评论 5 351
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 42,037评论 3 335
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,519评论 0 25
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,621评论 1 274
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 49,099评论 3 378
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,691评论 2 361

推荐阅读更多精彩内容