属性
存储属性
简单来说,一个存储属性就是存储在特定类或结构体实例里的一个常量或变量。存储属性可以是变量存储属性var
,也可以是常量存储属性let
。
struct FixedLengthRange {
var firstValue: Int
let length: Int
}
因为结构体有成员逐一构造器,所以不需要属性必须要有初始值或者必须需要构造器。但在类中却不行。
// 报错 Class 'Men' has no initializers
class Men {
var name: String
let sex = "man"
}
常量的存储属性
结构体struct
属于值类型。当值类型的实例被声明为常量的时候,它的所有属性也就成了常量。
let rangeOfFourItems = FixedLengthRange(firstValue: 0, length: 4)
// 该区间表示整数0,1,2,3
rangeOfFourItems.firstValue = 6
// 尽管 firstValue 是个变量属性,这里还是会报错
类class
属于引用类型。把一个引用类型的实例赋给一个常量后,仍然可以修改该实例的变量属性。
class Men {
var name: String = ""
let sex = "man"
}
let someMan = Men()
someMan.name = "Jay"
延迟存储属性
延迟存储属性是指当第一次被调用的时候才会计算其初始值的属性。在属性声明前使用lazy
来标示一个延迟存储属性。
必须将延迟存储属性声明成变量var
,因为属性的初始值可能在实例构造完成之后才会得到。而常量属性在构造过程完成之前必须要有初始值,因此无法声明成延迟属性。
class DataImporter {
/* DataImporter 是一个负责将外部文件中的数据导入的类。 这个类的初始化会消耗不少时间。 */
var fileName = "data.txt"
// 这里会提供数据导入功能
}
class DataManager {
lazy var importer = DataImporter()
var data = [String]()
// 这里会提供数据管理功能
}
let manager = DataManager()
manager.data.append("Some data")
manager.data.append("Some more data")
// DataImporter 实例的 importer 属性还没有被创建
importer
属性只有在第一次被访问的时候才被创建。比如访问它的属性fileName
时:
print(manager.importer.fileName)
// DataImporter 实例的 importer 属性现在被创建了
注意:
如果一个被标记为lazy
的属性在没有初始化时就同时被多个线程访问,则无法保证该属性只会被初始化一次。
计算属性
除存储属性外,类、结构体和枚举可以定义计算属性。计算属性不直接存储值,而是提供一个getter
和一个可选的setter
,来间接获取和设置其他属性或变量的值。
struct Point {
var x = 0.0, y = 0.0
}
struct Size {
var width = 0.0, height = 0.0
}
struct Rect {
var origin = Point()
var size = Size()
var center: Point {
get {
let centerX = origin.x + (size.width / 2)
let centerY = origin.y + (size.height / 2)
return Point(x: centerX, y: centerY)
}
set(newCenter) {
origin.x = newCenter.x - (size.width / 2)
origin.y = newCenter.y - (size.height / 2)
}
}
}
var square = Rect(origin: Point(x: 0.0, y: 0.0), size: Size(width: 10.0, height: 10.0))
let initialSquareCenter = square.center
square.center = Point(x: 15.0, y: 15.0)
print("square.origin is now at (\(square.origin.x), \(square.origin.y))")
// 打印 "square.origin is now at (10.0, 10.0)”
这个例子定义了 3 个结构体来描述几何形状:
-
Point
封装了一个(x, y)
的坐标 -
Size
封装了一个width
和一个height
-
Rect
表示一个有原点和尺寸的矩形
Rect也提供了一个名为center
的计算属性。一个矩形的中心点可以从原点origin
和大小size
算出,所以不需要将它以显式声明的 Point
来保存。Rect
的计算属性center
提供了自定义的getter
和setter
来获取和设置矩形的中心点,就像它有一个存储属性一样。
简化 setter 声明
如果计算属性的setter
没有定义表示新值的参数名,则可以使用默认名称newValue
。
struct Rect {
var origin = Point()
var size = Size()
var center: Point {
get {
let centerX = origin.x + (size.width / 2)
let centerY = origin.y + (size.height / 2)
return Point(x: centerX, y: centerY)
}
set {
origin.x = newValue.x - (size.width / 2)
origin.y = newValue.y - (size.height / 2)
}
}
}
只读计算属性
只有getter
没有setter
的计算属性就是只读计算属性。只读计算属性总是返回一个值,可以通过点运算符访问,但不能设置新的值。
必须使用var
关键字定义计算属性,包括只读计算属性,因为它们的值不是固定的。let
关键字只用来声明常量属性,表示初始化后再也无法修改的值。
struct Rect {
var origin = Point()
var size = Size()
var center: Point {
get {
let centerX = origin.x + (size.width / 2)
let centerY = origin.y + (size.height / 2)
return Point(x: centerX, y: centerY)
}
}
}
只读计算属性的声明可以去掉get
关键字和花括号:
struct Rect {
var origin = Point()
var size = Size()
var center: Point {
let centerX = origin.x + (size.width / 2)
let centerY = origin.y + (size.height / 2)
return Point(x: centerX, y: centerY)
}
}
属性观察器
属性观察器监控和响应属性值的变化,每次属性被设置值的时候都会调用属性观察器,即使新值和当前值相同的时候也不例外。
可以为除了延迟存储属性之外的其他存储属性添加属性观察器,也可以通过重写属性的方式为继承的属性(包括存储属性和计算属性)添加属性观察器。你不必为非重写的计算属性添加属性观察器,因为可以通过它的setter
直接监控和响应值的变化。
-
willSet
在新的值被设置之前调用 -
didSet
在新的值被设置之后立即调用
class StepCounter {
var totalSteps: Int = 0 {
willSet(newTotalSteps) {
print("About to set totalSteps to \(newTotalSteps)")
}
didSet {
if totalSteps > oldValue {
print("Added \(totalSteps - oldValue) steps")
}
}
}
}
let stepCounter = StepCounter()
stepCounter.totalSteps = 200
// About to set totalSteps to 200
// Added 200 steps
注意:
父类的属性在子类的构造器中被赋值时,它在父类中的 willSet 和 didSet 观察器会被调用,随后才会调用子类的观察器。在父类初始化方法调用之前,子类给属性赋值时,观察器不会被调用。如果将属性通过 in-out 方式传入函数,willSet 和 didSet 也会调用。这是因为 in-out 参数采用了拷入拷出模式:即在函数内部使用的是参数的 copy,函数结束后,又对参数重新赋值。
全局变量和局部变量
计算属性和属性观察器所描述的功能也可以用于全局变量和局部变量。全局变量是在函数、方法、闭包或任何类型之外定义的变量。局部变量是在函数、方法或闭包内部定义的变量。
另外,在全局或局部范围都可以定义计算型变量和为存储型变量定义观察器。计算型变量跟计算属性一样,返回一个计算结果而不是存储值,声明格式也完全一样
全局的常量或变量都是延迟计算的,跟延迟存储属性相似,不同的地方在于,全局的常量或变量不需要标记
lazy
修饰符。局部范围的常量或变量从不延迟计算。
类型属性
实例属性属于一个特定类型的实例,每创建一个实例,实例都拥有属于自己的一套属性值,实例之间的属性相互独立。
类型本身定义属性,无论创建了多少个该类型的实例,这些属性都只有唯一一份。这种属性就是类型属性。
类型属性注意点
- 跟实例的存储型属性不同,必须给存储型类型属性指定默认值,因为类型本身没有构造器,也就无法在初始化过程中使用构造器给类型属性赋值。
- 存储型类型属性是延迟初始化的,它们只有在第一次被访问的时候才会被初始化。即使它们被多个线程同时访问,系统也保证只会对其进行一次初始化,并且不需要对其使用
lazy
修饰符。
类型属性语法
使用关键字static
来定义类型属性。在为类定义计算型类型属性时,可以改用关键字class
来支持子类对父类的实现进行重写。
struct SomeStruct {
static var storedTypeProperty = "Some value."
static var computedTypeProperty: Int {
return 1
}
}
enum SomeEnum {
static var storedTypeProperty = "Some value."
static var computedTypeProperty: Int {
return 6
}
}
class SomeClass {
static var storedTypeProperty = "Some value."
static var computedTypeProperty: Int {
return 27
}
class var overrideableComputedTypeProperty: Int {
return 107
}
}
跟实例属性一样,类型属性也是通过点运算符来访问。但是,类型属性是通过类型本身来访问,而不是通过实例。
print(SomeStruct.storedTypeProperty) // 打印 "Some value."
SomeStruct.storedTypeProperty = "Another value."
print(SomeStruct.storedTypeProperty) // 打印 "Another value.”
print(SomeEnum.computedTypeProperty) // 打印 "6"
print(SomeClass.computedTypeProperty) // 打印 "27"
方法
实例方法
实例方法是属于某个特定类、结构体或者枚举类型实例的方法。实例方法提供访问和修改实例属性的方法或提供与实例目的相关的功能,并以此来支撑实例的功能。实例方法的语法与函数完全一致,详情参见函数。
class Counter {
var count = 0
func increment() {
count += 1
}
func increment(by amount: Int) {
count += amount
}
func reset() {
count = 0
}
}
self 属性
类型的每一个实例都有一个隐含属性叫做self
,self
完全等同于该实例本身。你可以在一个实例的实例方法中使用这个隐含的self
属性来引用当前实例。
func increment() {
self.count += 1
}
实际上,你不必在你的代码里面经常写self
。只要在一个方法中使用一个已知的属性或者方法名称,如果你没有明确地写self
,Swift
假定你是指当前实例的属性或者方法。
使用这条规则的主要场景是实例方法的某个参数名称与实例的某个属性名称相同的时候。在这种情况下,参数名称享有优先权,并且在引用属性时必须使用一种更严格的方式。这时你可以使用self
属性来区分参数名称和属性名称。
struct Point {
var x = 0.0, y = 0.0
func isToTheRightOfX(x: Double) -> Bool {
return self.x > x
}
}
在实例方法中修改值类型
结构体和枚举是值类型。默认情况下,值类型的属性不能在它的实例方法中被修改。
但是,如果你确实需要在某个特定的方法中修改结构体或者枚举的属性,你可以为这个方法选择可变mutating
行为,然后就可以从其方法内部改变它的属性;并且这个方法做的任何改变都会在方法执行结束时写回到原始结构中。方法还可以给它隐含的self
属性赋予一个全新的实例,这个新实例在方法结束时会替换现存实例。
struct Point {
var x = 0.0, y = 0.0
mutating func moveBy(x deltaX: Double, y deltaY: Double) {
x += deltaX
y += deltaY
}
}
var somePoint = Point(x: 1.0, y: 1.0)
somePoint.moveBy(x: 2.0, y: 3.0)
print("The point is now at (\(somePoint.x), \(somePoint.y))")
// 打印 "The point is now at (3.0, 4.0)"
不能在结构体类型的常量上调用可变方法,因为其属性不能被改变,即使属性是变量属性。
let fixedPoint = Point(x: 3.0, y: 3.0)
fixedPoint.moveBy(x: 2.0, y: 3.0)
// 这里将会报告一个错误
在可变方法中给 self 赋值
可变方法能够赋给隐含属性self
一个全新的实例。上面Point
的例子可以用下面的方式改写:
struct Point {
var x = 0.0, y = 0.0
mutating func moveBy(x deltaX: Double, y deltaY: Double) {
self = Point(x: x + deltaX, y: y + deltaY)
}
}
类型方法
实例方法是被某个类型的实例调用的方法。你也可以定义在类型本身上调用的方法,这种方法就叫做类型方法。在方法的func
关键字之前加上关键字static
,来指定类型方法。类还可以用关键字class
来允许子类重写父类的方法实现。
class SomeClass {
static func someMethod() {
// 在这里实现类型方法
}
class func overrideableMethod() {
// 在这里实现类型方法
}
}
SomeClass.someMethod()
SomeClass.overrideableMethod()
下标
一个类型可以定义多个下标,通过不同索引类型进行重载。下标不限于一维,你可以定义具有多个入参的下标满足自定义类型的需求。
下标语法
下标允许你通过在实例名称后面的方括号中传入一个或者多个索引值来对实例进行存取。语法类似于实例方法语法和计算型属性语法的混合。与定义实例方法类似,定义下标使用subscript
关键字,指定一个或多个输入参数和返回类型;与实例方法不同的是,下标可以设定为读写或只读。这种行为由getter
和setter
实现,有点类似计算型属性:
struct TimesTable {
let multiplier: Int
subscript(index: Int) -> Int {
return multiplier * index
}
}
let threeTimesTable = TimesTable(multiplier: 3)
print("six times three is \(threeTimesTable[6])")
// 打印 "six times three is 18"
下标可以接受任意数量的入参,并且这些入参可以是任意类型。下标的返回值也可以是任意类型。下标可以使用变量参数和可变参数,但不能使用输入输出参数,也不能给参数设置默认值。
一个类或结构体可以根据自身需要提供多个下标实现,使用下标时将通过入参的数量和类型进行区分,自动匹配合适的下标,这就是下标的重载。