single cell~ single cell~ single all the way~

刘小泽写于19.5.16
分析单细胞数据,尤其是10X需要对barcode、UMI、拆分等名词进行了解,于是追根溯源,发现理解它的工作原理对后续分析的进行会有帮助

先看个图片,有个大体印象

图1
图2
图3

10X 机器做了什么?

10X公司把微珠加DNA标签、微滴反应、酶反应以及高通量测序后的数据分析整合到了一起,做了一个基于油包水乳浊液酶反应原理的分析系统。

看到的10X机器就是制备油包水的乳浊液,它搭配芯片一起工作,这个机器制备一次乳浊液大约耗时7-9分钟,能产生500-8万个细胞

再看看芯片(上图二),芯片有4排8列,也就是32个孔。每一列孔对应一个样本,也就是说,一张芯片一次可以处理8个样本。
(图二)中
编号1️⃣的孔是用来放样本的(sample well);
编号2️⃣是用来放预制微珠(gel beads);
编号3️⃣是用来放油的,最上面那一排是做好乳浊液以后,回收乳浊液的孔

目前单细胞测序主要还是基于对一群细胞中每个细胞的表达量分析

工作原理第一步:微珠上DNA引物设计
图4

先预制凝胶微珠,也就是所说的gel beads,然后每个凝胶微珠"种上"特定的DNA片段,每个DNA序列分成几段:

  • 第一段是barcode,16bp碱基,大约350万种barcodes,一个微珠对应一个barcode,利用这么多barcode可以区分各个凝胶微珠。=》每个凝胶微珠的ID号

    其中任意两个barcode之间至少差两个或者两个以上的碱基,因为测序存在对碱基的误读,这样设计可以避免将两个barcode搞混(可以试想,如果两个barcode之差一个碱基,那么就有16分之一的概率将两个判断成一个)

  • 第二段是UMI序列,即unique molecular index,它是一段随机序列,也就是说每个DNA分子都有自己的UMI序列,UMI长为10bp,那么就有4^10=1,048,576也就是100多万种变化。它的作用就是经过了PCR+深度测序后,找到reads与原始cDNA的对应关系 =》 每个DNA标签分子的ID号

    它考虑到了这样一种情况:一个基因片段经过PCR扩增产生多个reads,但是不加标记我们是不知道的,并且不同基因的PCR扩增效率可能不同,因此一个基因最后得到的reads数就可能由于PCR扩增效率高而超过了另一个基因(而这两个基因的真实表达量可能差不多)。也就是排除"PCR bias"

  • 第三段是Poly(dT)序列,它起到的作用是与mRNA的poly(A)尾巴结合,作为逆转录的引物,将cDNA逆转录出来

图5
工作原理第二步:芯片的液流管路
图6

细胞混悬液在第一个十字交叉口,与凝胶微珠混合;接着进入第二个交叉口,这时加上油滴,把凝胶微珠+细胞混悬液包裹起来=》油包水的小液滴=》这些油包水的小微滴就组成了乳浊液

乳浊液中,有的是包含一个细胞的(红圈部分),也有的不包含细胞,还有的有两个以上细胞(这个叫"Doublets") ,一个小液滴中包含几个细胞是符合"泊松分布"的。

大部分细胞会匹配到一个小液滴中(细胞混悬液中大约有65%的细胞可以被成功包到有微珠的小液滴中=》也叫做细胞的捕获效率~65%),后续分析的reads就是从它们这里来的

图7
工作原理第三步:测序文库构建

得到乳浊液后,就要脱掉细胞膜,让其中的mRNA游离出来=》

游离出来的mRNA与小液滴中的水相混合,水相中包括凝胶微珠上连着的核酸引物、逆转录酶、dNTP底物,发生逆转录反应=》

通过mRNA的polyA与凝胶微珠上的polyT互补,mRNA与凝胶微珠上带有标签的DNA分子结合起来,然后在逆转录酶作用下,逆转录出cDNA=》

这样得到的cDNA分子是带有微珠特定的barcode标签的,并且每个cDNA分子带有特定的UMI标签,有了这两个标签,就可以区分这个特定的cDNA与其他的cDNA=》

然后将乳浊液中所有的水相抽出来,也就是把带有标签的cDNA分子抽出来=》

cDNA分子加接头,PCR扩增,得到illumina文库

图8

数据构成

一个样本一般就测几百或几千细胞,barcode种类却有3百多万,所以很少出现一个barcode对应两个细胞的情况。因此得到的数据可以通过barcode拆分,将测序reads回溯到每个细胞

当然,是有可能出现一个barcode对应两个甚至多个细胞的情况,这时如果按照barcode去拆分,就会将这两个或者多个细胞的reads组合成一个"pool"。因此,为了减少pool的出现,就要在细胞混悬液制备阶段,控制原始的细胞数量

所以这里看到,并不是制备的细胞数越多越好。原始细胞数越少,最后的混合pool就越少,这也是符合泊松分布的。一般来说一个样本混悬液的细胞数在1万以下比较好

利用UMI对reads进行简并,就可以看到细胞reads与基因数量之间的关系,比如这样:横坐标是细胞reads数,纵坐标是基因数,reads数越多能得到的基因也就越多。一般来说一个细胞读到30万条reads后,基因数量随reads数增加的速度会变慢=》基因数量"平台期"

图9

一般一个细胞可以得到4万-8万个有效的UMI,平均一个细胞的一个基因有10个UMI;

一个细胞的一个基因的表达量是衡量这个细胞的一个维度,于是几千个被测基因的表达量形成了几千个维度。如果将成千上万个细胞放在一起分析,经过降维、聚类,放到一个三维空间并加上颜色,就形成了这样的分布形式

图10

然后如果将三维空间的一团细胞拿出来,放大,继续细分,就能得到这团细胞的亚型

图11

欢迎关注我们的公众号~_~  
我们是两个农转生信的小硕,打造生信星球,想让它成为一个不拽术语、通俗易懂的生信知识平台。需要帮助或提出意见请后台留言或发送邮件到jieandze1314@gmail.com

Welcome to our bioinfoplanet!

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,753评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,668评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,090评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,010评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,054评论 6 395
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,806评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,484评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,380评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,873评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,021评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,158评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,838评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,499评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,044评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,159评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,449评论 3 374
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,136评论 2 356