版权声明:本文为博主原创文章,未经博主允许不得转载。
难度:容易
要求:
给定一个字符串和一个偏移量,根据偏移量旋转字符串(从左向右旋转)
样例
对于字符串 "abcdefg".
offset=0 => "abcdefg"
offset=1 => "gabcdef"
offset=2 => "fgabcde"
offset=3 => "efgabcd"
思路:
题目描述:
定义字符串的左旋转操作:把字符串前面的若干个字符移动到字符串的尾部。
如把字符串abcdef左旋转2位得到字符串cdefab。
请实现字符串左旋转的函数,要求对长度为n的字符串操作的时间复杂度为O(n),空间复杂度为O(1)。
编程之美上有这样一个类似的问题,咱们先来看一下:
设计一个算法,把一个含有N个元素的数组循环右移K位,要求时间复杂度为O(N),
且只允许使用两个附加变量。
分析:
我们先试验简单的办法,可以每次将数组中的元素右移一位,循环K次。
abcd1234→4abcd123→34abcd12→234abcd1→1234abcd。
RightShift(int* arr, int N, int K)
{
while(K--)
{
int t = arr[N - 1];
for(int i = N - 1; i > 0; i --)
arr[i] = arr[i - 1];
arr[0] = t;
}
}
虽然这个算法可以实现数组的循环右移,但是算法复杂度为O(K * N),不符合题目的要求,要继续探索。
假如数组为abcd1234,循环右移4位的话,我们希望到达的状态是1234abcd。
不妨设K是一个非负的整数,当K为负整数的时候,右移K位,相当于左移(-K)位。
左移和右移在本质上是一样的。
解法一:
大家开始可能会有这样的潜在假设,K<N。事实上,很多时候也的确是这样的。但严格来说,我们不能用这样的“惯性思维”来思考问题。
尤其在编程的时候,全面地考虑问题是很重要的,K可能是一个远大于N的整数,在这个时候,上面的解法是需要改进的。
仔细观察循环右移的特点,不难发现:每个元素右移N位后都会回到自己的位置上。因此,如果K > N,右移K-N之后的数组序列跟右移K位的结果是一样的。
进而可得出一条通用的规律:
右移K位之后的情形,跟右移K’= K % N位之后的情形一样,如代码清单2-34所示。
//代码清单2-34
RightShift(int* arr, int N, int K)
{
K %= N;
while(K--)
{
int t = arr[N - 1];
for(int i = N - 1; i > 0; i --)
arr[i] = arr[i - 1];
arr[0] = t;
}
}
可见,增加考虑循环右移的特点之后,算法复杂度降为O(N^2),这跟K无关,与题目的要求又接近了一步。但时间复杂度还不够低,接下来让我们继续挖掘循环右移前后,数组之间的关联。
解法二:
假设原数组序列为abcd1234,要求变换成的数组序列为1234abcd,即循环右移了4位。比较之后,不难看出,其中有两段的顺序是不变的:1234和abcd,可把这两段看成两个整体。右移K位的过程就是把数组的两部分交换一下。
变换的过程通过以下步骤完成:
逆序排列abcd:abcd1234 → dcba1234;
逆序排列1234:dcba1234 → dcba4321;
全部逆序:dcba4321 → 1234abcd。
伪代码可以参考清单2-35。
//代码清单2-35
Reverse(int* arr, int b, int e)
{
for(; b < e; b++, e--)
{
int temp = arr[e];
arr[e] = arr[b];
arr[b] = temp;
}
}
RightShift(int* arr, int N, int k)
{
K %= N;
Reverse(arr, 0, N – K - 1);
Reverse(arr, N - K, N - 1);
Reverse(arr, 0, N - 1);
}
这样,我们就可以在线性时间内实现右移操作了。
public class Solution {
/**
* @param str: an array of char
* @param offset: an integer
* @return: nothing
*/
public void rotateString(char[] str, int offset) {
if(str == null || str.length == 0){
return;
}
int len = str.length;
offset = offset % len;
reverse(str, 0, len - offset - 1);
reverse(str, len - offset, len - 1);
reverse(str, 0, len - 1);
}
private void reverse(char[] str,int start,int end){
for( ;start < end; start++,end--){
char tmp = str[start];
str[start] = str[end];
str[end] = tmp;
}
}
}