一、关于kubernetes
1.1.kubernetes简介
• Kubernetes是Google在2014年开源的一个容器集群管理系统,Kubernetes简称K8S。
• K8S用于容器化应用程序的部署,扩展和管理。
• K8S提供了容器编排,资源调度,弹性伸缩,部署管理,服务发现等一系列功能。
• Kubernetes目标是让部署容器化应用简单高
1.2.kubernetes特性
- 自我修复
在节点故障时重新启动失败的容器,替换和重新部署,保证预期的副本数量;杀死健康检查失败的容器,并且在未准备好之前不会处理客户端请求,确保线上服务不中断。
- 弹性伸缩
使用命令、UI或者基于CPU使用情况自动快速扩容和缩容应用程序实例,保证应用业务高峰并发时的高可用性;业务低峰时回收资源,以最小成本运行服务。
- 自动部署和回滚
K8S采用滚动更新策略更新应用,一次更新一个Pod,而不是同时删除所有Pod,如果更新过程中出现问题,将回滚更改,确保升级不受影响业务。
- 服务发现和负载均衡
K8S为多个容器提供一个统一访问入口(内部IP地址和一个DNS名称),并且负载均衡关联的所有容器,使得用户无需考虑容器IP问题。
- 机密和配置管理
管理机密数据和应用程序配置,而不需要把敏感数据暴露在镜像里,提高敏感数据安全性。并可以将一些常用的配置存储在K8S中,方便应用程序使用。
- 存储编排
挂载外部存储系统,无论是来自本地存储,公有云(如AWS),还是网络存储(如NFS、GlusterFS、Ceph)都作为集群资源的一部分使用,极大提高存储使用灵活性。
- 批处理
提供一次性任务,定时任务;满足批量数据处理和分析的场
1.3.kubernetes组件
Master组件
- kube-apiserver
Kubernetes API,集群的统一入口,各组件协调者,以RESTful API提供接口服务,所有对象资源的增删改查和监听操作都交给APIServer处理后再提交给Etcd存储。
- kube-controller-manager
处理集群中常规后台任务,一个资源对应一个控制器,而ControllerManager就是负责管理这些控制器的。
- kube-scheduler
根据调度算法为新创建的Pod选择一个Node节点,可以任意部署,可以部署在同一个节点上,也可以部署在不同的节点上。
- etcd
分布式键值存储系统。用于保存集群状态数据,比如Pod、Service等对象信
Node组件
- kubelet
kubelet是Master在Node节点上的Agent,管理本机运行容器的生命周期,比如创建容器、Pod挂载数据卷、下载secret、获取容器和节点状态等工作。kubelet将每个Pod转换成一组容器。
- kube-proxy
在Node节点上实现Pod网络代理,维护网络规则和四层负载均衡工作。
- docker或rocket
容器引擎,运行容
1.4.kubernetes核心
- POD
最小部署单元 一组容器的集合 一个Pod中的容器共享网络命名空间 Pod是短暂的
- Controllers
• ReplicaSet : 确保预期的Pod副本数量 • Deployment : 无状态应用部署 • StatefulSet : 有状态应用部署 • DaemonSet : 确保所有Node运行同一个Pod • Job : 一次性任务 • Cronjob : 定时任务 更高级层次对象,部署和管理P
- Service
• 防止Pod失联 • 定义一组Pod的访问
- Label
标签,附加到某个资源上,用于关联对象、查询和筛选
- Namespace
标签,附加到某个资源上,用于关联对象、查询和筛选
1.5.kubernetes部署
- minikube
Minikube是一个工具,可以在本地快速运行一个单点的Kubernetes,仅用于尝试Kubernetes或日常开发的用户使用
部署地址:https://kubernetes.io/zh/docs/tasks/tools/
- kubeadm
Kubeadm也是一个工具,提供kubeadm init和kubeadm join,用于快速部署Kubernetes集群。
部署地址:https://kubernetes.io/zh/docs/reference/setup-tools/kubeadm/
- 二进制包
推荐,从官方下载发行版的二进制包,手动部署每个组件,组成Kubernetes集群。
从第二章节介绍二进制包集群安装
二、kubernetes二进制集群部署
2.1.服务器规划
角色 | IP | 备注(组件) |
---|---|---|
k8s-master1 | 172.30.3.20 | kube-apiserver,kube-controller-manager,kube-scheduler,etcd |
k8s-master2 | 172.30.3.30 | kube-apiserver,kube-controller-manager,kube-scheduler,etcd |
k8s-master3 | 172.30.3.40 | kube-apiserver,kube-controller-manager,kube-scheduler,etcd |
k8s-worker1 | 172.30.3.21 | kubelet,kube-proxy,docker |
k8s-worker2 | 172.30.3.31 | kubelet,kube-proxy,docker |
k8s-worker3 | 172.30.3.41 | kubelet,kube-proxy,docker |
SLB | 172.30.3.1 | 代理kube-apiserver |
2.2.kubernetes架构图
2.3.操作系统初始化配置<所有节点都做>
#1.关闭防火墙
systemctl stop firewalld
systemctl disable firewalld
#2.关闭selinux
sed -ri 's/^SELINUX=.*/SELINUX=disabled/g' /etc/selinux/config #永久
setenforce 0 # 临时
#3.关闭swap
swapoff -a # 临时
sed -ri 's/.*swap.*/#&/' /etc/fstab # 永久
sed -ri '/.*swap.*/d' /etc/fstab #或者删除
free -m #通过此命令验证swap都变成0
#4.依据规划设置主机名并添加hosts
hostnamectl set-hostname <hostname>
echo "$(ip add show | grep -E "BROADCAST|global"| awk '{print $2}'|grep -v "ens*"|awk -F/ '{print $1}') $(hostname -s)" >> /etc/hosts
#5.在所有master节点上添加hosts
cat >> /etc/hosts << EOF
172.30.3.20 k8s-master1
172.30.3.30 k8s-master2
172.30.3.40 k8s-master3
172.30.3.21 k8s-worker1
172.30.3.31 k8s-worker2
172.30.3.41 k8s-worker3
EOF
#6.优化内核<特别桥接的IPv4流量传递到iptables的链和nat>
cat >> /etc/sysctl.d/99-k8s.conf << EOF
#sysctls for k8s node config
net.ipv4.tcp_slow_start_after_idle=0
net.core.rmem_max=16777216
fs.inotify.max_user_watches=524288
kernel.softlockup_all_cpu_backtrace=1
kernel.softlockup_panic=1
fs.file-max=2097152
fs.inotify.max_user_instances=8192
fs.inotify.max_queued_events=16384
vm.max_map_count=262144
fs.may_detach_mounts=1
net.core.netdev_max_backlog=16384
net.ipv4.tcp_wmem=4096 12582912 16777216
net.core.wmem_max=16777216
net.core.somaxconn=32768
net.ipv4.ip_forward=1
net.ipv4.tcp_max_syn_backlog=8096
net.bridge.bridge-nf-call-ip6tables = 1
net.bridge.bridge-nf-call-iptables=1
net.ipv4.tcp_rmem=4096 12582912 16777216
EOF
sysctl --system #生效
#7.时间同步
yum install ntpdate -y
ntpdate ntp1.aliyun.com
2.4.cfssl证书生成工具
#1.在matster任意一台主机下载cfssl工具
wget https://pkg.cfssl.org/R1.2/cfssl_linux-amd64
wget https://pkg.cfssl.org/R1.2/cfssljson_linux-amd64
wget https://pkg.cfssl.org/R1.2/cfssl-certinfo_linux-amd64
chmod +x cfssl_linux-amd64 cfssljson_linux-amd64 cfssl-certinfo_linux-amd64
mv cfssl_linux-amd64 /usr/local/bin/cfssl
mv cfssljson_linux-amd64 /usr/local/bin/cfssljson
mv cfssl-certinfo_linux-amd64 /usr/bin/cfssl-certinfo
2.4.1.生成ETCD证书
#1.创建证书目录
mkdir -p ~/TLS/{etcd,k8s}
cd TLS/etcd
#2.自签证书颁发机构(CA)
cat > ca-config.json << EOF
{
"signing": {
"default": {
"expiry": "438000h",
"usages": ["signing", "key encipherment", "server auth", "client auth"]
}
}
}
EOF
cat > ca-csr.json << EOF
{
"CN": "etcd CA",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"L": "Tianjin",
"ST": "Tianjin"
}
]
}
EOF
#3.生成证书
cfssl gencert -initca ca-csr.json | cfssljson -bare ca
#4\. 使用自签CA签发Etcd HTTPS证书
#创建证书申请文件:
cat > server-csr.json << EOF
{
"CN": "etcd",
"hosts": [
"172.30.3.20",
"172.30.3.30",
"172.30.3.40"
],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"L": "Tianjin",
"ST": "Tianjin"
}
]
}
EOF
#注:文件hosts字段中IP为所有etcd节点的集群内部通信IP,一个都不能少!为了方便后期扩容可以多写几个预留的IP。
#5.etcd https证书生成
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json server-csr.json | cfssljson -bare server
2.4.2.生成kube-apiserver证书
#1.自签证书颁发机构(CA)
cd ~/TLS/k8s/
cat > ca-config.json << EOF
{
"signing": {
"default": {
"expiry": "438000h"
},
"profiles": {
"kubernetes": {
"expiry": "438000h",
"usages": [
"signing",
"key encipherment",
"server auth",
"client auth"
]
}
}
}
}
EOF
cat > ca-csr.json << EOF
{
"CN": "kubernetes",
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"L": "Tianjin",
"ST": "Tianjin",
"O": "k8s",
"OU": "System"
}
]
}
EOF
#2.生成证书
cfssl gencert -initca ca-csr.json | cfssljson -bare ca -
#3.使用自签CA签发kube-apiserver HTTPS证书
cat > server-csr.json << EOF
{
"CN": "kubernetes",
"hosts": [
"10.0.0.1",
"127.0.0.1",
"172.30.3.1",
"172.30.3.20",
"172.30.3.30",
"172.30.3.40",
"kubernetes",
"kubernetes.default",
"kubernetes.default.svc",
"kubernetes.default.svc.cluster",
"kubernetes.default.svc.cluster.local"
],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"L": "Tianjin",
"ST": "Tianjin",
"O": "k8s",
"OU": "System"
}
]
}
EOF
#注释:上述文件hosts字段中IP为所有Master/LB等 IP,一个都不能少!为了方便后期扩容可以多写几个预留的IP。
#4.生成证书
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes server-csr.json | cfssljson -bare server
#5.校验证书两种方式
cfssl-certinfo -cert server.pem
#或
openssl x509 -noout -text -in server.pem
#以上k8s证书暂时不用留到2.7.节kube-apiserver使用。
2.4.3.生成kube-proxy证书
#1.# 切换工作目录
cd ~/TLS/k8s
#2\. 创建证书请求文件
cat > kube-proxy-csr.json << EOF
{
"CN": "system:kube-proxy",
"hosts": [],
"key": {
"algo": "rsa",
"size": 2048
},
"names": [
{
"C": "CN",
"L": "Tianjin",
"ST": "Tianjin",
"O": "k8s",
"OU": "System"
}
]
}
EOF
#3.生成证书
cfssl gencert -ca=ca.pem -ca-key=ca-key.pem -config=ca-config.json -profile=kubernetes kube-proxy-csr.json | cfssljson -bare kube-proxy
#以上证书借给2.8节部署kube-proxy使用。
2.5.在所有节点部署docker
#1.下载地址:
wget https://download.docker.com/linux/static/stable/x86_64/docker-19.03.9.tgz
#2.解压二进制docker
tar zxvf docker-19.03.9.tgz
cp -r docker/* /usr/bin/
#3.创建docker.service服务
cat > /usr/lib/systemd/system/docker.service << EOF
[Unit]
Description=Docker Application Container Engine
Documentation=https://docs.docker.com
After=network-online.target firewalld.service
Wants=network-online.target
[Service]
Type=notify
ExecStart=/usr/bin/dockerd
ExecReload=/bin/kill -s HUP \$MAINPID
LimitNOFILE=infinity
LimitNPROC=infinity
LimitCORE=infinity
TimeoutStartSec=0
Delegate=yes
KillMode=process
Restart=on-failure
StartLimitBurst=3
StartLimitInterval=60s
[Install]
WantedBy=multi-user.target
EOF
#4.创建配置文件
mkdir /etc/docker
cat > /etc/docker/daemon.json << EOF
{
"registry-mirrors": ["https://docker.mirrors.ustc.edu.cn"]
}
EOF
#使用ustc.edu.cn镜像加速源
#5.启动并设置开机启动
systemctl daemon-reload
systemctl start docker
systemctl enable docker
#6.在所有其他节点执行以下操作
scp -r 172.30.3.20:~/k8s/docker/* /usr/bin/
scp -r 172.30.3.20:/usr/lib/systemd/system/docker.service /usr/lib/systemd/system/
mkdir /etc/docker
scp 172.30.3.20:/etc/docker/daemon.json /etc/docker/
systemctl daemon-reload
systemctl start docker
systemctl enable docker
#7.验证docker
systemctl status docker
2.6.在master节点部署Etcd
以下在节点1上操作,然后将节点1生成的所有文件拷贝到节点2和节点3.
etcd3.4.9集群搭建参考:https://www.centoscn.vip/3408.html#login
#1.下载etcd-v3.4.9-linux-amd64.tar.gz
wget https://github.com/etcd-io/etcd/releases/download/v3.4.9/etcd-v3.4.9-linux-amd64.tar.gz
#2.创建工作目录并解压二进制包
mkdir /opt/etcd/{bin,cfg,pki} -p
tar zxvf etcd-v3.4.9-linux-amd64.tar.gz
mv etcd-v3.4.9-linux-amd64/{etcd,etcdctl} /opt/etcd/bin/
#3.创建etcd配置文件
cat > /opt/etcd/cfg/etcd.conf << EOF
#[Member]
ETCD_NAME="etcd-1"
ETCD_DATA_DIR="/var/lib/etcd/default.etcd"
ETCD_LISTEN_PEER_URLS="https://172.30.3.20:2380"
ETCD_LISTEN_CLIENT_URLS="https://172.30.3.20:2379"
#[Clustering]
ETCD_INITIAL_ADVERTISE_PEER_URLS="https://172.30.3.20:2380"
ETCD_ADVERTISE_CLIENT_URLS="https://172.30.3.20:2379"
ETCD_INITIAL_CLUSTER="etcd-1=https://172.30.3.20:2380,etcd-2=https://172.30.3.30:2380,etcd-3=https://172.30.3.40:2380"
ETCD_INITIAL_CLUSTER_TOKEN="etcd-cluster"
ETCD_INITIAL_CLUSTER_STATE="new"
EOF
#4.拷贝etcd证书至/opt/etcd/pki/目录中
cp ~/TLS/etcd/ca*pem ~/TLS/etcd/server*pem /opt/etcd/pki/
#5.创建etcd系统服务
cat > /usr/lib/systemd/system/etcd.service << EOF
[Unit]
Description=Etcd Server
After=network.target
After=network-online.target
Wants=network-online.target
[Service]
Type=notify
EnvironmentFile=/opt/etcd/cfg/etcd.conf
ExecStart=/opt/etcd/bin/etcd \
--cert-file=/opt/etcd/pki/server.pem \
--key-file=/opt/etcd/pki/server-key.pem \
--peer-cert-file=/opt/etcd/pki/server.pem \
--peer-key-file=/opt/etcd/pki/server-key.pem \
--trusted-ca-file=/opt/etcd/pki/ca.pem \
--peer-trusted-ca-file=/opt/etcd/pki/ca.pem \
--logger=zap
Restart=on-failure
LimitNOFILE=65536
[Install]
WantedBy=multi-user.target
EOF
#6.将master1上etcd文件分别拷贝到master2和master3上,分别在master2和master3节点上执行下列命令
scp -r 172.30.3.20:/opt/etcd /opt/
scp 172.30.3.20:/usr/lib/systemd/system/etcd.service /usr/lib/systemd/system/
#7.分别在master2和master3节点修改/opt/etcd/cfg/etcd.conf
sed -i '1,2s/etcd-1/etcd-2/g;4,8s/172.30.3.20/172.30.3.30/g' /opt/etcd/cfg/etcd.conf
sed -i '1,2s/etcd-1/etcd-3/g;4,8s/172.30.3.20/172.30.3.40/g' /opt/etcd/cfg/etcd.conf
#8.在所有节点上启动并设置开机启动
systemctl daemon-reload
systemctl start etcd
#注:在第一台节点上执行start后会一直卡着无法返回命令提示符,这是因为在等待其他节点准备就绪,继续启动其余节点即可
systemctl enable etcd
#9.验证etcd启动是否成功
systemctl status etcd|grep Active
#在所有节点能看到如下代表成功
Active: active (running) since 四 2020-12-24 23:17:46 CST; 29s ago
#10.etcd集群验证,在任意节点执行如下命令
ETCDCTL_API=3 /opt/etcd/bin/etcdctl --cacert=/opt/etcd/pki/ca.pem --cert=/opt/etcd/pki/server.pem --key=/opt/etcd/pki/server-key.pem --endpoints="https://172.30.3.20:2379,https://172.30.3.30:2379,https://172.30.3.40:2379" endpoint health
#出现如下结果代表集群没有问题
https://172.30.3.20:2379 is healthy: successfully committed proposal: took = 29.121183ms
https://172.30.3.40:2379 is healthy: successfully committed proposal: took = 29.418321ms
https://172.30.3.30:2379 is healthy: successfully committed proposal: took = 31.590166ms
#如果出现问题可以通过tail /var/log/message或journalctl -u etcd查看日志
etcd配置文件注解
- ETCD_NAME:节点名称,集群中唯一
- ETCD_DATA_DIR:数据目录
- ETCD_LISTEN_PEER_URLS:集群通信监听地址
- ETCD_LISTEN_CLIENT_URLS:客户端访问监听地址
- ETCD_INITIAL_ADVERTISE_PEER_URLS:集群通告地址
- ETCD_ADVERTISE_CLIENT_URLS:客户端通告地址
- ETCD_INITIAL_CLUSTER:集群节点地址
- ETCD_INITIAL_CLUSTER_TOKEN:集群Token
- ETCD_INITIAL_CLUSTER_STATE:加入集群的当前状态,new是新集群,existing表示加入已有集群
2.7.在master节点部署kubernetes
本部署下载kubernetes1.18.13版本,
只需要下载server包,里面包含了Master和worker node二进制
mkdir -p /opt/kubernetes/{bin,cfg,pki,logs} tar zxvf kubernetes-server-linux-amd64.tar.gz cd kubernetes/server/bin cp kube-apiserver kube-scheduler kube-controller-manager /opt/kubernetes/bin cp kubectl /usr/bin #在master2和master3节点执行以下命令 scp -r 172.30.3.20:/opt/kubernetes /opt/ scp 172.30.3.20:/usr/bin/kubectl /usr/bin/
2.7.1.部署kube-apiserver
#1.拷贝2.4.2章节生成kube-apiserver证书到指定目录
cp ~/TLS/k8s/ca*pem ~/TLS/k8s/server*pem /opt/kubernetes/pki/
#2.配置token文件(启用TLS Bootstrapping机制)
#2.1.生成token
head -c 16 /dev/urandom | od -An -t x | tr -d ' '
86dea681fd5060a83619352673a21e66
#2.2.创建token文件
cat > /opt/kubernetes/cfg/token.csv << EOF
86dea681fd5060a83619352673a21e66,kubelet-bootstrap,10001,"system:node-bootstrapper"
EOF
#格式:token,用户名,UID,用户组
#3.创建kube-apiserver配置文件
cat > /opt/kubernetes/cfg/kube-apiserver.conf << EOF
KUBE_APISERVER_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/opt/kubernetes/logs \\
--etcd-servers=https://172.30.3.20:2379,https://172.30.3.30:2379,https://172.30.3.40:2379 \\
--bind-address=172.30.3.20 \\
--secure-port=6443 \\
--advertise-address=172.30.3.1 \\
--allow-privileged=true \\
--service-cluster-ip-range=10.0.0.0/24 \\
--enable-admission-plugins=NamespaceLifecycle,LimitRanger,ServiceAccount,ResourceQuota,NodeRestriction \\
--authorization-mode=RBAC,Node \\
--enable-bootstrap-token-auth=true \\
--token-auth-file=/opt/kubernetes/cfg/token.csv \\
--service-node-port-range=30000-32767 \\
--kubelet-client-certificate=/opt/kubernetes/pki/server.pem \\
--kubelet-client-key=/opt/kubernetes/pki/server-key.pem \\
--tls-cert-file=/opt/kubernetes/pki/server.pem \\
--tls-private-key-file=/opt/kubernetes/pki/server-key.pem \\
--client-ca-file=/opt/kubernetes/pki/ca.pem \\
--service-account-key-file=/opt/kubernetes/pki/ca-key.pem \\
--etcd-cafile=/opt/etcd/pki/ca.pem \\
--etcd-certfile=/opt/etcd/pki/server.pem \\
--etcd-keyfile=/opt/etcd/pki/server-key.pem \\
--audit-log-maxage=30 \\
--audit-log-maxbackup=3 \\
--audit-log-maxsize=100 \\
--audit-log-path=/opt/kubernetes/logs/k8s-audit.log"
EOF
#注释:上面两个\\第一个是转义符,第二个是换行符,使用转义符是为了使用EOF保留换行符。
#4.systemd管理apiserver
cat > /usr/lib/systemd/system/kube-apiserver.service << EOF
[Unit]
Description=Kubernetes API Server
Documentation=https://github.com/kubernetes/kubernetes
[Service]
EnvironmentFile=/opt/kubernetes/cfg/kube-apiserver.conf
ExecStart=/opt/kubernetes/bin/kube-apiserver \$KUBE_APISERVER_OPTS
Restart=on-failure
[Install]
WantedBy=multi-user.target
EOF
#5.启动并设置开机启动
systemctl daemon-reload
systemctl start kube-apiserver
systemctl enable kube-apiserver
#6.授权kubelet-bootstrap用户允许请求证书
kubectl create clusterrolebinding kubelet-bootstrap \
--clusterrole=system:node-bootstrapper \
--user=kubelet-bootstrap
#7.把master1节点上内容分别拷贝到在master2和master3节点上,注意token不变,配置文件分别修改--bind-address成本机ip,--advertise-address是SLB的ip地址不变化(已经在负载配置完成)
#在master2和master3分别执行以下语句
scp -r 172.30.3.20:/opt/kubernetes /opt/
sed -i '5,/bind-address/s/172.30.3.20/172.30.3.30/g'/opt/kubernetes/cfg/kube-apiserver.conf
sed -i '5,/bind-address/s/172.30.3.20/172.30.3.40/g'/opt/kubernetes/cfg/kube-apiserver.conf
#修改--bind-address成本机ip地址
scp -r 172.30.3.20:/usr/lib/systemd/system/kube-apiserver.service /usr/lib/systemd/system/
systemctl daemon-reload
systemctl start kube-apiserver
systemctl enable kube-apiserver
#8.验证在浏览器上输入以下地址
https://172.30.3.1:6443/version
https://172.30.3.20:6443/version
https://172.30.3.30:6443/version
https://172.30.3.40:6443/version #以上地址返回kubernetes版本信息说明正常
#或在主节点上执行
curl -k https://172.30.3.1:6443/version
#或者在各节点执行以下命令能看到etcd各节点为健康说明正常
kubectl get cs
启用 TLS Bootstrapping 机制
TLS Bootstraping:Master apiserver启用TLS认证后,Node节点kubelet和kube-proxy要与kube-apiserver进行通信,必须使用CA签发的有效证书才可以,当Node节点很多时,这种客户端证书颁发需要大量工作,同样也会增加集群扩展复杂度。为了简化流程,Kubernetes引入了TLS bootstraping机制来自动颁发客户端证书,kubelet会以一个低权限用户自动向apiserver申请证书,kubelet的证书由apiserver动态签署。所以强烈建议在Node上使用这种方式,目前主要用于kubelet,kube-proxy还是由我们统一颁发一个证书。
kube-apiserver配置文件注解:
–logtostderr:启用日志
—v:日志等级
–log-dir:日志目录
–etcd-servers:etcd集群地址
–bind-address:监听地址
–secure-port:https安全端口
–advertise-address:集群通告地址
–allow-privileged:启用授权
–service-cluster-ip-range:Service虚拟IP地址段
–enable-admission-plugins:准入控制模块
–authorization-mode:认证授权,启用RBAC授权和节点自管理
–enable-bootstrap-token-auth:启用TLS bootstrap机制
–token-auth-file:bootstrap token文件
–service-node-port-range:Service nodeport类型默认分配端口范围
–kubelet-client-xxx:apiserver访问kubelet客户端证书
–tls-xxx-file:apiserver https证书
–etcd-xxxfile:连接Etcd集群证书
–audit-log-xxx:审计日志
2.7.2.部署kube-controller-manager
#1.创建部署文件
cat > /opt/kubernetes/cfg/kube-controller-manager.conf << EOF
KUBE_CONTROLLER_MANAGER_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/opt/kubernetes/logs \\
--leader-elect=true \\
--master=127.0.0.1:8080 \\
--bind-address=127.0.0.1 \\
--allocate-node-cidrs=true \\
--cluster-cidr=10.244.0.0/16 \\
--service-cluster-ip-range=10.0.0.0/24 \\
--cluster-signing-cert-file=/opt/kubernetes/pki/ca.pem \\
--cluster-signing-key-file=/opt/kubernetes/pki/ca-key.pem \\
--root-ca-file=/opt/kubernetes/pki/ca.pem \\
--service-account-private-key-file=/opt/kubernetes/pki/ca-key.pem \\
--experimental-cluster-signing-duration=438000h0m0s"
EOF
#2.systemd管理controller-manager
cat > /usr/lib/systemd/system/kube-controller-manager.service << EOF
[Unit]
Description=Kubernetes Controller Manager
Documentation=https://github.com/kubernetes/kubernetes
[Service]
EnvironmentFile=/opt/kubernetes/cfg/kube-controller-manager.conf
ExecStart=/opt/kubernetes/bin/kube-controller-manager \$KUBE_CONTROLLER_MANAGER_OPTS
Restart=on-failure
[Install]
WantedBy=multi-user.target
EOF
#3.启动并设置开机启动
systemctl daemon-reload
systemctl start kube-controller-manager
systemctl enable kube-controller-manager
#4.在master2和master3节点分别执行以下命令
scp 172.30.3.20:/opt/kubernetes/cfg/kube-controller-manager.conf /opt/kubernetes/cfg/
scp 172.30.3.20:/usr/lib/systemd/system/kube-controller-manager.service /usr/lib/systemd/system/
systemctl daemon-reload
systemctl start kube-controller-manager
systemctl enable kube-controller-manager
#5.在所有节点执行命令以下能看到controller-manager状态为健康说明正常
kubectl get cs
–master:通过本地非安全本地端口8080连接apiserver。
–leader-elect:当该组件启动多个时,自动选举(HA)
–cluster-signing-cert-file/–cluster-signing-key-file:自动为kubelet颁发证书的CA,与apiserver保持一致
2.7.3.部署kube-scheduler
#1.创建配置文件
cat > /opt/kubernetes/cfg/kube-scheduler.conf << EOF
KUBE_SCHEDULER_OPTS="--logtostderr=false \
--v=2 \
--log-dir=/opt/kubernetes/logs \
--leader-elect \
--master=127.0.0.1:8080 \
--bind-address=127.0.0.1"
EOF
#--master:通过本地非安全本地端口8080连接apiserver
#--leader-electl
#2.systemd管理scheduler
cat > /usr/lib/systemd/system/kube-scheduler.service << EOF
[Unit]
Description=Kubernetes Scheduler
Documentation=https://github.com/kubernetes/kubernetes
[Service]
EnvironmentFile=/opt/kubernetes/cfg/kube-scheduler.conf
ExecStart=/opt/kubernetes/bin/kube-scheduler \$KUBE_SCHEDULER_OPTS
Restart=on-failure
[Install]
WantedBy=multi-user.target
EOF
#3.启动并设置开机启动
systemctl daemon-reload
systemctl start kube-scheduler
systemctl enable kube-scheduler
#4.在master2和master3节点分别执行以下命令
scp 172.30.3.20:/opt/kubernetes/cfg/kube-scheduler.conf /opt/kubernetes/cfg/
scp 172.30.3.20:/usr/lib/systemd/system/kube-scheduler.service /usr/lib/systemd/system/
systemctl daemon-reload
systemctl start kube-scheduler
systemctl enable kube-scheduler
#5.在所有节点执行命令以下能看到kube-scheduler状态为健康说明正常
kubectl get cs
2.7.4.验证master集群
在所有master节点上执行以下命令
kubectl get cs
能看到controller-manager/scheduler/etcd-{0,1,2}状态为Healthy,那么代表master节点集群正常并完成搭建,如下图
2.8.在worker节点部署kubernetes
#1.在worker1节点上创建目录
mkdir -p /opt/kubernetes/{bin,cfg,pki,logs}
#从master1节点上拷贝
scp 172.30.3.20:~/k8s/kubernetes/server/bin/kubelet /opt/kubernetes/bin/
scp 172.30.3.20:~/k8s/kubernetes/server/bin/kube-proxy /opt/kubernetes/bin/
#2.拷贝kubernetes目录到worker2和worker3节点上
scp -r 172.30.3.21:/opt/kubernetes /opt/
2.8.1.部署kubelet
#1.创建配置文件
###--hostname-override=k8s-worker1修改worker节点主机名
cat > /opt/kubernetes/cfg/kubelet.conf << EOF
KUBELET_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/opt/kubernetes/logs \\
--hostname-override=k8s-worker1 \\
--network-plugin=cni \\
--kubeconfig=/opt/kubernetes/cfg/kubelet.kubeconfig \\
--bootstrap-kubeconfig=/opt/kubernetes/cfg/bootstrap.kubeconfig \\
--config=/opt/kubernetes/cfg/kubelet-config.yml \\
--cert-dir=/opt/kubernetes/pki \\
--pod-infra-container-image=mirrorgooglecontainers/pause-amd64:3.0"
EOF
#2.配置参数文件
cat > /opt/kubernetes/cfg/kubelet-config.yml << EOF
kind: KubeletConfiguration
apiVersion: kubelet.config.k8s.io/v1beta1
address: 0.0.0.0
port: 10250
readOnlyPort: 10255
cgroupDriver: cgroupfs
clusterDNS:
- 10.0.0.2
clusterDomain: cluster.local
failSwapOn: false
authentication:
anonymous:
enabled: false
webhook:
cacheTTL: 2m0s
enabled: true
x509:
clientCAFile: /opt/kubernetes/pki/ca.pem
authorization:
mode: Webhook
webhook:
cacheAuthorizedTTL: 5m0s
cacheUnauthorizedTTL: 30s
evictionHard:
imagefs.available: 15%
memory.available: 100Mi
nodefs.available: 10%
nodefs.inodesFree: 5%
maxOpenFiles: 1000000
maxPods: 110
EOF
#3.生成bootstrap.kubeconfig文件
#先在master1节点创建kubeconfig.sh脚本来生成
cat > ~/TLS/kubeconfig.sh << EOF
# !/bin/bash
#Author: Autumner
#Date: 20201229
#Contents: bootstrap
KUBE_APISERVER="https://172.30.3.1:6443" # apiserver IP:PORT 采用SLB ip
TOKEN="86dea681fd5060a83619352673a21e66" # 与token.csv里保持一致
# 生成 kubelet bootstrap kubeconfig 配置文件
kubectl config set-cluster kubernetes \\
--certificate-authority=/opt/kubernetes/pki/ca.pem \\
--embed-certs=true \\
--server=\${KUBE_APISERVER} \\
--kubeconfig=bootstrap.kubeconfig
kubectl config set-credentials "kubelet-bootstrap" \\
--token=\${TOKEN} \\
--kubeconfig=bootstrap.kubeconfig
kubectl config set-context default \\
--cluster=kubernetes \\
--user="kubelet-bootstrap" \\
--kubeconfig=bootstrap.kubeconfig
kubectl config use-context default --kubeconfig=bootstrap.kubeconfig
EOF
#4.拷贝bootstrap.kubeconfig、ca.pem到worker1节点
scp 172.30.3.20:~/TLS/bootstrap.kubeconfig /opt/kubernetes/cfg/
scp -r 172.30.3.20:~/TLS/k8s/ca.*pem /opt/kubernetes/pki/
#5.systemd管理kubelet
cat > /usr/lib/systemd/system/kubelet.service << EOF
[Unit]
Description=Kubernetes Kubelet
After=docker.service
[Service]
EnvironmentFile=/opt/kubernetes/cfg/kubelet.conf
ExecStart=/opt/kubernetes/bin/kubelet \$KUBELET_OPTS
Restart=on-failure
LimitNOFILE=65536
[Install]
WantedBy=multi-user.target
EOF
#6.启动并设置开机启动
systemctl daemon-reload
systemctl start kubelet
systemctl enable kubelet
#7.在worker2和worker3节点执行以下命令
scp 172.30.3.21:/opt/kubernetes/cfg /opt/kubernetes/
#--hostname-override=k8s-worker1修改worker节点主机名
sed -i '4,/hostname/s/k8s-worker1/k8s-worker2/g' /opt/kubernetes/cfg/kubelet.conf
sed -i '4,/hostname/s/k8s-worker1/k8s-worker3/g' /opt/kubernetes/cfg/kubelet.conf
scp 172.30.3.21:/opt/kubernetes/pki/ca.pem /opt/kubernetes/pki/
scp 172.30.3.21:/usr/lib/systemd/system/kubelet.service /usr/lib/systemd/system/
systemctl daemon-reload
systemctl start kubelet
systemctl enable kubelet
#8.验证kublet证书请求
#在master节点执行下列命令,结果出现Pending说明节点kubelet运行正常。
kubectl get csr
–hostname-override:显示名称,集群中唯一
–network-plugin:启用CNI
–kubeconfig:空路径,会自动生成,后面用于连接apiserver
–bootstrap-kubeconfig:首次启动向apiserver申请证书
–config:配置参数文件
–cert-dir:kubelet证书生成目录
–pod-infra-container-image:管理Pod网络容器的镜像
2.8.2.批准kubelet证书申请并加入集群
#1.在任何master节点查看kubelet证书请求
kubectl get csr
#2.批准申请三个worker节点
kubectl certificate approve node-csr-DKMUkyEHKI4IUDB2d8lHCmr2c0bYJ8dW_lSkW7CS3aE
kubectl certificate approve node-csr-HPn09iiwkE85htYTDBdv0pBkrWkiB6_ABgcB62aH4IM
kubectl certificate approve node-csr-peYqvUWJ_G1xL0cTZouelXegZjD3Eqatd7Q1_P708_U
#3.查看节点
kubectl get node
NAME STATUS ROLES AGE VERSION
k8s-worker1 NotReady <none> 8m37s v1.18.13
k8s-worker2 NotReady <none> 43s v1.18.13
k8s-worker3 NotReady <none> 50s v1.18.13
#注:由于网络插件还没有部署,节点会没有准备就绪 NotReady
2.8.3.部署kube-proxy
#1.在worker1节点创建配置文件
cat > /opt/kubernetes/cfg/kube-proxy.conf << EOF
KUBE_PROXY_OPTS="--logtostderr=false \\
--v=2 \\
--log-dir=/opt/kubernetes/logs \\
--config=/opt/kubernetes/cfg/kube-proxy-config.yml"
EOF
#2.生成kube-proxy.kubeconfig配置文件
#先在master1节点创建kube-proxy.sh脚本
cat > ~/TLS/kube-proxy.sh << EOF
#!/bin/bash
#Author: Autumner
#Date: 20201229
#Contents: kube-proxy.kubeconfig
KUBE_APISERVER="https://172.30.3.1:6443" # apiserver IP:PORT 采用SLB ip
kubectl config set-cluster kubernetes \\
--certificate-authority=/opt/kubernetes/pki/ca.pem \\
--embed-certs=true \\
--server=\${KUBE_APISERVER} \\
--kubeconfig=kube-proxy.kubeconfig
kubectl config set-credentials kube-proxy \\
--client-certificate=./k8s/kube-proxy.pem \\
--client-key=./k8s/kube-proxy-key.pem \\
--embed-certs=true \\
--kubeconfig=kube-proxy.kubeconfig
kubectl config set-context default \\
--cluster=kubernetes \\
--user=kube-proxy \\
--kubeconfig=kube-proxy.kubeconfig
kubectl config use-context default --kubeconfig=kube-proxy.kubeconfig
EOF
#kube-proxy.kubeconfig拷贝到配置文件指定路径
scp 172.30.3.20:~/TLS/kube-proxy.kubeconfig /opt/kubernetes/cfg/
#3.配置参数文件
#####hostnameOverride: k8s-worker1修改成worker节点的主机名
cat > /opt/kubernetes/cfg/kube-proxy-config.yml << EOF
kind: KubeProxyConfiguration
apiVersion: kubeproxy.config.k8s.io/v1alpha1
bindAddress: 0.0.0.0
metricsBindAddress: 0.0.0.0:10249
clientConnection:
kubeconfig: /opt/kubernetes/cfg/kube-proxy.kubeconfig
hostnameOverride: k8s-worker1
clusterCIDR: 10.0.0.0/24
EOF
#4.systemd管理kube-proxy
cat > /usr/lib/systemd/system/kube-proxy.service << EOF
[Unit]
Description=Kubernetes Proxy
After=network.target
[Service]
EnvironmentFile=/opt/kubernetes/cfg/kube-proxy.conf
ExecStart=/opt/kubernetes/bin/kube-proxy \$KUBE_PROXY_OPTS
Restart=on-failure
LimitNOFILE=65536
[Install]
WantedBy=multi-user.target
EOF
#5.启动并设置开机启动
systemctl daemon-reload
systemctl start kube-proxy
systemctl enable kube-proxy
#6.验证kube-proxy是否有报错
journalctl -u kube-proxy
#7.在worker2和worker3节点执行以下命令
scp 172.30.3.21:/opt/kubernetes/cfg/kube-proxy* /opt/kubernetes/cfg/
#hostnameOverride: k8s-worker1修改成worker节点的主机名
sed -i '7,/hostnameOverride/s/k8s-worker1/k8s-worker2/g' /opt/kubernetes/cfg/kube-proxy-config.yml
sed -i '7,/hostnameOverride/s/k8s-worker1/k8s-worker3/g' /opt/kubernetes/cfg/kube-proxy-config.yml
scp 172.30.3.21:/usr/lib/systemd/system/kube-proxy.service /usr/lib/systemd/system/
systemctl daemon-reload
systemctl start kube-proxy
systemctl enable kube-proxy
2.9.部署CNI网络
#1.进入worker1节点上下载CNI二进制文件
#CNI地址:https://github.com/containernetworking/plugins/releases/
#当前下载版本
wget https://github.com/containernetworking/plugins/releases/download/v0.9.0/cni-plugins-linux-amd64-v0.9.0.tgz
#创建目录并解压
mkdir -p /opt/cni/bin
tar xzf cni-plugins-linux-amd64-v0.9.0.tgz -C /opt/cni/bin/
#worker2和worker3节点分别执行以下命令
scp -r 172.30.3.21:/opt/cni /opt/
#2.部署CNI网络
#在master1节点下载(有些网络是无法下载的,需要翻墙)
wget https://raw.githubusercontent.com/coreos/flannel/master/Documentation/kube-flannel.yml
#下载完成后默认镜像地址无法访问,修改为docker hub镜像仓库。
sed -i -r "s#quay.io/coreos/flannel:.*-amd64#dockerhub能访问到的镜像地址#g" kube-flannel.yml
#3.在master1节点执行
kubectl apply -f kube-flannel.yml
#4.验证CNI网络是否部署成功
kubectl -n kube-system get pods
#flannel状态为RUNNING
kubectl get node
#所有worker节点状态处于Ready
2.10.授权apiserver访问kubelet
#1.在master1节点执行以下
cat > apiserver-to-kubelet-rbac.yaml << EOF
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
annotations:
rbac.authorization.kubernetes.io/autoupdate: "true"
labels:
kubernetes.io/bootstrapping: rbac-defaults
name: system:kube-apiserver-to-kubelet
rules:
- apiGroups:
- ""
resources:
- nodes/proxy
- nodes/stats
- nodes/log
- nodes/spec
- nodes/metrics
- pods/log
verbs:
- "*"
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
name: system:kube-apiserver
namespace: ""
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: system:kube-apiserver-to-kubelet
subjects:
- apiGroup: rbac.authorization.k8s.io
kind: User
name: kubernetes
EOF
#2.运行该yaml文件
kubectl apply -f apiserver-to-kubelet-rbac.yaml
#3.验证yaml
kubectl -n kube-system get clusterrole|grep system:kube-apiserver-to-kubelet
kubectl -n kube-system get clusterrolebinding|grep system:kube-apiserver
#以上命令有返回结果代表apiserver授权访问成功。
三、kubernetes插件部署
3.1.Dashboard部署
#1.下载Dashboard的yaml文件
#官方主页https://github.com/kubernetes/dashboard
wget https://raw.githubusercontent.com/kubernetes/dashboard/v2.1.0/aio/deploy/recommended.yaml
#2.默认Dashboard只能集群内部访问,修改Service为NodePort类型,暴露到外部:
vim recommended.yaml
...
---
kind: Service
apiVersion: v1
metadata:
labels:
k8s-app: kubernetes-dashboard
name: kubernetes-dashboard
namespace: kubernetes-dashboard
spec:
type: NodePort #新增
ports:
- port: 443
targetPort: 8443
nodePort: 30001 #新增
selector:
k8s-app: kubernetes-dashboard
---
...
kubectl apply -f recommended.yaml
#3.验证
kubectl -n kubernetes-dashboard get pod,svc
#pod状态处于Running说明部署成功
#4.通过网页访问使用worker节点任意ip访问
https://NodeIP:30001
#5.创建service account并绑定默认cluster-admin管理员集群角色:
kubectl create serviceaccount dashboard-admin -n kube-system
kubectl create clusterrolebinding dashboard-admin --clusterrole=cluster-admin --serviceaccount=kube-system:dashboard-admin
kubectl describe secrets -n kube-system $(kubectl -n kube-system get secret | awk '/dashboard-admin/{print $1}')
#6.使用输出的token登录Dashboard
https://172.30.3.31:30001
#在设置项里可以修改语言
3.2.CoreDNS部署h
#1.kubernetes与coredns版本对照表
https://github.com/coredns/deployment/blob/master/kubernetes/CoreDNS-k8s_version.md
#2.编写coredns.yaml文件(参考https://gitee.com/afei00123/k8s_file/blob/master/coredns.yaml)
vim coredns.yaml
# Warning: This is a file generated from the base underscore template file: coredns.yaml.base
apiVersion: v1
kind: ServiceAccount
metadata:
name: coredns
namespace: kube-system
labels:
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
labels:
kubernetes.io/bootstrapping: rbac-defaults
addonmanager.kubernetes.io/mode: Reconcile
name: system:coredns
rules:
- apiGroups:
- ""
resources:
- endpoints
- services
- pods
- namespaces
verbs:
- list
- watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
annotations:
rbac.authorization.kubernetes.io/autoupdate: "true"
labels:
kubernetes.io/bootstrapping: rbac-defaults
addonmanager.kubernetes.io/mode: EnsureExists
name: system:coredns
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: system:coredns
subjects:
- kind: ServiceAccount
name: coredns
namespace: kube-system
---
apiVersion: v1
kind: ConfigMap
metadata:
name: coredns
namespace: kube-system
labels:
addonmanager.kubernetes.io/mode: EnsureExists
data:
Corefile: |
.:53 {
errors
health {
lameduck 5s
}
ready
kubernetes cluster.local in-addr.arpa ip6.arpa {
pods insecure
fallthrough in-addr.arpa ip6.arpa
ttl 30
}
prometheus :9153
forward . /etc/resolv.conf
cache 30
loop
reload
loadbalance
}
---
apiVersion: apps/v1
kind: Deployment
metadata:
name: coredns
namespace: kube-system
labels:
k8s-app: kube-dns
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
kubernetes.io/name: "CoreDNS"
spec:
# replicas: not specified here:
# 1. In order to make Addon Manager do not reconcile this replicas parameter.
# 2. Default is 1.
# 3. Will be tuned in real time if DNS horizontal auto-scaling is turned on.
strategy:
type: RollingUpdate
rollingUpdate:
maxUnavailable: 1
selector:
matchLabels:
k8s-app: kube-dns
template:
metadata:
labels:
k8s-app: kube-dns
annotations:
seccomp.security.alpha.kubernetes.io/pod: 'docker/default'
spec:
serviceAccountName: coredns
tolerations:
- key: node-role.kubernetes.io/master
effect: NoSchedule
- key: "CriticalAddonsOnly"
operator: "Exists"
containers:
- name: coredns
image: coredns/coredns:1.6.7
imagePullPolicy: IfNotPresent
resources:
limits:
memory: 170Mi
requests:
cpu: 100m
memory: 70Mi
args: [ "-conf", "/etc/coredns/Corefile" ]
volumeMounts:
- name: config-volume
mountPath: /etc/coredns
readOnly: true
ports:
- containerPort: 53
name: dns
protocol: UDP
- containerPort: 53
name: dns-tcp
protocol: TCP
- containerPort: 9153
name: metrics
protocol: TCP
livenessProbe:
httpGet:
path: /health
port: 8080
scheme: HTTP
initialDelaySeconds: 60
timeoutSeconds: 5
successThreshold: 1
failureThreshold: 5
securityContext:
allowPrivilegeEscalation: false
capabilities:
add:
- NET_BIND_SERVICE
drop:
- all
readOnlyRootFilesystem: true
dnsPolicy: Default
volumes:
- name: config-volume
configMap:
name: coredns
items:
- key: Corefile
path: Corefile
---
apiVersion: v1
kind: Service
metadata:
name: kube-dns
namespace: kube-system
annotations:
prometheus.io/port: "9153"
prometheus.io/scrape: "true"
labels:
k8s-app: kube-dns
kubernetes.io/cluster-service: "true"
addonmanager.kubernetes.io/mode: Reconcile
kubernetes.io/name: "CoreDNS"
spec:
selector:
k8s-app: kube-dns
clusterIP: 10.0.0.2 #dns ip
ports:
- name: dns
port: 53
protocol: UDP
- name: dns-tcp
port: 53
protocol: TCP
#3.执行部署命令
kubectl apply -f coredns.yaml
#4.查看验证
kubectl -n kube-system get pods,svc
#查看configmap
kubectl get cm coredns -n kube-system -o yaml
#编辑configmap
kubectl -n kube-system edit cm coredns
#重新调度pod使配置生效
kubectl get pods -n kube-system | grep coredns | awk '{print $1}' | xargs kubectl -n kube-system delete pod
#5.DNS解析测试
kubectl run -it --rm dns-test --image=busybox:1.28.4 sh
/# nslookup kubernetes
/# ping kubernetes
/# nslookup 163.com
/# ping 163.com
#如下图
四、kubernetes辅助工具部署
4.1.helm安装及使用
helm介绍:是查找、分享和使用软件构建 Kubernetes 的最优方式。
功能:
helm一个命令行管理工具
chart把yaml打包
release发布
4.1.1.helm安装
#1.helm下载
https://helm.sh/zh/
#2.在所有master节点上解压helm到/usr/bin/目录中
tar -xzf helm-v3.4.2-linux-amd64.tar.gz
cp linux-amd64/helm /usr/bin/
scp /usr/bin/helm 172.30.3.30:/usr/bin/
scp /usr/bin/helm 172.30.3.40:/usr/bin/
4.1.2.helm安装weave-scope实例
#helm帮助文档:https://helm.sh/zh/docs/
#1.配置helm仓库源
#开放仓库源:http://mirror.kaiyuanshe.cn/kubernetes/charts/
# http://mirror.azure.cn/kubernetes/charts/
helm repo add stable http://mirror.kaiyuanshe.cn/kubernetes/charts #每个master节点都需要配置
#2.查看仓库
helm repo list
helm repo update #更新仓库
#3.搜索weave-scope
helm search repo weave-scope
#4.安装weave-scope
helm install k8s-ui stable/weave-scope
#以下安装返回结果
WARNING: This chart is deprecated
NAME: k8s-ui
LAST DEPLOYED: Tue Jan 5 15:20:29 2021
NAMESPACE: default
STATUS: deployed
REVISION: 1
NOTES:
You should now be able to access the Scope frontend in your web browser, by
using kubectl port-forward:kubectl -n default port-forward $(kubectl -n default get endpoints
k8s-ui-weave-scope -o jsonpath='{.subsets[0].addresses[0].targetRef.name}') 8080:4040then browsing to http://localhost:8080/.
For more details on using Weave Scope, see the Weave Scope documentation:
#5.开放宿主机访问
kubectl get svc #得到svc服务
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
k8s-ui-weave-scope NodePort 10.0.0.31 <none> 80/TCP 9m13s
kubernetes ClusterIP 10.0.0.1 <none> 443/TCP 8d
nginx NodePort 10.0.0.122 <none> 80:31574/TCP 98m
#6.编辑svc服务
kubectl edit svc k8s-ui-weave-scope
#把ClusterIP替换成NodePort然后保存退出
kubectl get svc #得到svc服务
NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
k8s-ui-weave-scope NodePort 10.0.0.31 <none> 80:32684/TCP 9m13s
kubernetes ClusterIP 10.0.0.1 <none> 443/TCP 8d
nginx NodePort 10.0.0.122 <none> 80:31574/TCP 98m
#7.浏览器访问
http://workerIP:32684
4.1.3.helm创建自定义模板
helm的chart功能在于一套yaml部署多个应用。yaml模板经常变动有
- 资源名称
- 镜像
- 标签
- 副本数
- 端口
#1.创建多应用mychart模板
helm create mychart
#生成以下文件或目录
charts Chart.yaml templates values.yaml
#重要修改templates里内容和修改values.yaml文件
编辑values.yaml文件
#
vim mychart/values.yaml
replicas: 1
image: nginx
tag: latest
label: nginx
port: 80
编辑deployment.yaml
vim mychart/templates/deployment.yaml
apiVersion: apps/v1
kind: Deployment
metadata:
name: {{ .Release.Name}}-deploy #跟后缀不准有大写字母
spec:
replicas: {{ .Values.replicas }}
selector:
matchLabels:
app: {{ .Values.label }}
template:
metadata:
labels:
app: {{ .Values.label }}
spec:
containers:
- image: {{ .Values.image }}:{{ .Values.tag }}
name: {{ .Values.image }}-{{ .Values.tag }}
编辑service.yaml
vim mychart/templates/service.yaml
apiVersion: v1
kind: Service
metadata:
name: {{ .Release.Name }}-svc
spec:
ports:
- port: 80
protocol: TCP
targetPort: {{ .Values.port }}
selector:
app: {{ .Values.label }}
type: NodePort
#1.测试mychart模板编写是否有误
helm install nginx1 --dry-run mychart/
#或
helm lint mychart/
#2.运行mychart模板
helm install nginx1 mychart/
#3.验证是否运行成功
helm list #或 helm list --all
#或者
kubectl get pods,svc
#4.卸载mychart应用
helm uninstall nginx1
#5.给模板打包
helm package mychart/ #生成mychart-0.1.0.tgz
#直接运行包
helm install nginx2 mychart-0.1.0.tgz
#6.版本更新(扩展副本数,变更镜像等)
#扩展副本数
helm upgrade --set replicas=2 nginx1 mychart/
kubectl get pods,svc #可以查看到新扩展副本数
#7.回滚
#首先查看历史版本
helm history nginx1
helm rollback nginx1 1 #1代表历史版本
#Rollback was a success! Happy Helming!
kubectl get pods #可以查看已经回滚1版本
#或
helm history nginx1 #历史版本
4.1.4.helm命令基本使用
helm completion #- 为指定的shell生成自动补全脚本
helm create #- 使用给定的名称创建chart
helm dependency #- 管理chart依赖
helm env #- helm客户端环境信息
helm get #- 下载命名版本的扩展信息
helm history #- 检索发布历史
helm install #- 安装chart
helm lint #- 验证chart是否存在问题
helm list #- 列举发布版本
helm package #- 将chart目录打包
helm plugin #- 安装、列举或卸载Helm插件
helm pull #- 从仓库下载chart并(可选)在本地目录中打开
helm repo #- 添加、列出、删除、更新和索引chart仓库
helm rollback #- 回滚发布到上一个版本
helm search #- helm中搜索关键字
helm show #- 显示chart信息
helm status #- 显示命名版本的状态
helm template #- 本地渲染模板
helm test #- 执行发布的测试
helm uninstall #- 卸载版本
helm upgrade #- 升级版本
helm verify #- 验证给定路径的chart已经被签名且是合法的
helm version #- 打印客户端版本信息