9 Spark Streaming源码解读之Receiver在Driver的精妙实现全生命周期彻底研究和思考

1、我们以Socket数据来源为例,通过WordCount计算来跟踪Receiver的启动

代码如下:

objectNetworkWordCount {

  defmain(args:Array[String]) {
    if (args.length< 2) {
      System.err.println("Usage: NetworkWordCount<hostname> <port>")
      System.exit(1)
    }

    val sparkConf= newSparkConf().setAppName("NetworkWordCount").setMaster("local[2]")
    val ssc = newStreamingContext(sparkConf,Seconds(1))
    val lines= ssc.socketTextStream(args(0), args(1).toInt,StorageLevel.MEMORY_AND_DISK_SER)
    val words= lines.flatMap(_.split(""))
    val wordCounts= words.map(x => (x,1)).reduceByKey(_ + _)
    wordCounts.print()
    ssc.start()
    ssc.awaitTermination()
  }
}

2、ssc.socketTextStream调用socketStream方法,在socketStream方法中new SocketInputDStream实例,
SocketInputDStream继承自ReceiverInputDStream。SocketInputDStream实现了getReceiver方法,
在getReceiver方法中实例化了一个SocketReceiver,SocketReceiver继承自Receiver类。
在SocketReceiver中主要实现了onStart方法,在onStart方法中启动一个线程来调用receive方法,
在receiver方法中就是具体接收数据的逻辑代码,通过Socket来读取数据然后包装到Iterator中,从
的start方法。直接看scheduler.start()这行代码,调用了JobScheduler的start方法,
看到receiverTracker.start()代码调用了receiverTracker的start方法。接着看launchReceivers()方法。
代码如下:

private def launchReceivers(): Unit = {
  val receivers = receiverInputStreams.map(nis => {
    val rcvr = nis.getReceiver()
    rcvr.setReceiverId(nis.id)
    rcvr
  })
 
  runDummySparkJob()

  logInfo("Starting " + receivers.length + " receivers")
  endpoint.send(StartAllReceivers(receivers))
}

3.1 首先看receiverInputStreams ,他在ReceiverTracker实例化的时候声明
private val receiverInputStreams = ssc.graph.getReceiverInputStreams()
看val rcvr = nis.getReceiver(),rcvr是Receiver的一个子类,就是我们上面看的SocketReceiver,这里返回的是receivers,因为receiver可能有多个。
3.2 runDummySparkJob()从字面上看就是运行一个样本的job来测试一下应用的启动情况,看一下代码,就是运行一个简单的job测试

private def runDummySparkJob(): Unit = {
  if (!ssc.sparkContext.isLocal) {
    ssc.sparkContext.makeRDD(1 to 50, 50).map(x => (x, 1)).reduceByKey(_ + _, 20).collect()
  }
  assert(getExecutors.nonEmpty)
}

3.3 看最后一行代码endpoint.send(StartAllReceivers(receivers)),发送一条消息给ReceiverTrackerEndpoint, 而ReceiverTrackerEndpoint是在ReceiverTracker的start方法中被赋值的。
3.4 看ReceiverTrackerEndpoint中的消息接收方法,代码如下

case StartAllReceivers(receivers) =>
  val scheduledLocations = schedulingPolicy.scheduleReceivers(receivers, getExecutors)
  for (receiver <- receivers) {
    val executors = scheduledLocations(receiver.streamId)
    updateReceiverScheduledExecutors(receiver.streamId, executors)
    receiverPreferredLocations(receiver.streamId) = receiver.preferredLocation
    startReceiver(receiver, executors)
  }
  val scheduledLocations = schedulingPolicy.scheduleReceivers(receivers, getExecutors)

这行代码的作用就是计算第一个receiver可以运行的Executor,接下来看关键性的一行代码
startReceiver(receiver, executors),代码如下:

private def startReceiver(
    receiver: Receiver[_],
    scheduledLocations: Seq[TaskLocation]): Unit = {

  def shouldStartReceiver: Boolean = {
    // It's okay to start when trackerState is Initialized or Started
    !(isTrackerStopping || isTrackerStopped)
  }

  val receiverId = receiver.streamId
  if (!shouldStartReceiver) {
    onReceiverJobFinish(receiverId)
    return
  }

  val checkpointDirOption = Option(ssc.checkpointDir)
  val serializableHadoopConf = new SerializableConfiguration(ssc.sparkContext.hadoopConfiguration)

  // Function to start the receiver on the worker node
  val startReceiverFunc: Iterator[Receiver[_]] => Unit =
    (iterator: Iterator[Receiver[_]]) => {
      if (!iterator.hasNext) {
        throw new SparkException("Could not start receiver as object not found.")
      }
      if (TaskContext.get().attemptNumber() == 0) {
        val receiver = iterator.next()
        assert(iterator.hasNext == false)
        val supervisor = new ReceiverSupervisorImpl(receiver, SparkEnv.get, serializableHadoopConf.value, checkpointDirOption)
        supervisor.start()
        supervisor.awaitTermination()
      } else {
        // It's restarted by TaskScheduler, but we want to reschedule it again. So exit it.
      }
    }
  // Create the RDD using the scheduledLocations to run the receiver in a Spark job

  val receiverRDD: RDD[Receiver[_]] =
    if (scheduledLocations.isEmpty) {      
      ssc.sc.makeRDD(Seq(receiver), 1)
    } else {
      val preferredLocations = scheduledLocations.map(_.toString).distinct
      ssc.sc.makeRDD(Seq(receiver -> preferredLocations))
    }

  receiverRDD.setName(s"Receiver $receiverId")
  ssc.sparkContext.setJobDescription(s"Streaming job running receiver $receiverId")
  ssc.sparkContext.setCallSite(Option(ssc.getStartSite()).getOrElse(Utils.getCallSite()))
  val future = ssc.sparkContext.submitJob[Receiver[_], Unit, Unit](receiverRDD, startReceiverFunc, Seq(0), (_, _) => Unit, ())
  future.onComplete {
    case Success(_) =>
      if (!shouldStartReceiver) {
        onReceiverJobFinish(receiverId)
      } else {
        logInfo(s"Restarting Receiver $receiverId")
        self.send(RestartReceiver(receiver))
      }
    case Failure(e) =>
      if (!shouldStartReceiver) {
        onReceiverJobFinish(receiverId)
      } else {
        logError("Receiver has been stopped. Try to restart it.", e)
        logInfo(s"Restarting Receiver $receiverId")
        self.send(RestartReceiver(receiver))
      }
  }(submitJobThreadPool)
  logInfo(s"Receiver ${receiver.streamId} started")
}

4、具体看一下startReceiver方法都做了什么
4.1 看startReceiverFunc函数的定义,startReceiverFunc就是job中action执行的函数,首先判断iterator中有数据,然后取第一条数据(就是Receiver),看到这样的写法,真的非常神奇,把Receiver包装成RDD的数据发送到Executor上运行。

val supervisor = new ReceiverSupervisorImpl(receiver, SparkEnv.get, serializableHadoopConf.value, checkpointDirOption)
supervisor.start() 

4.2 把receiver传入ReceiverSupervisorImpl中,调用ReceiverSupervisorImpl的start方法,然后调用startReceiver,在startReceiver中调用receiver的onStart()方法,这就是前面提到的启动数据接收的方法
4.3 定义好action的函数,再来看receiverRDD,通过ssc.sc.makeRDD(Seq(receiver), 1)或ssc.sc.makeRDD(Seq(receiver -> preferredLocations))生成RDD
4.4 最后执行submitJob将RDD[Receiver]提交到集群,需要注意一点,每一个receiver生成一个job,如果一个Receiver的job失败不会影响整个应用的执行,job失败后重新发送self.send(RestartReceiver(receiver))消息,会重新提交job,保证receiver的可靠性,这样的设计值得学习

注:以上内容如有错误,欢迎指正

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343

推荐阅读更多精彩内容