商品推荐

#读取数据
data = pd.read_excel("./order_data.xlsx")
data.head()
data.dtypes
#数据清洗
data.isnull().any()
data = data.fillna(0)
data.head()
data.isnull().any()

#数据类型转化
data = data[(data.product_id > 0)]
data["catage_id"] = data["catage_id"].apply(lambda x: int(x))

#筛选出用户列表,只购买过一个商品的用户记录对共现矩阵没有影响,这样的数据没有意义
user_data = data.groupby("user_id").size()
user_data = user_data[user_data > 1]
data = data[data.user_id.isin(user_data.keys())]
user_list = data.values.tolist()

#获取商品列表
all_product_id = list(set(data["product_id"].values.tolist()))

#建立商品字典
product_to_index = {}
index_to_product = {}
for index,value in enumerate(all_product_id):
    product_to_index[value] = index
    index_to_product[index] = value

#1.创建用户-物品索引
user_item_index = {}
for user_id in user_data.keys():
    product_ids = data[data.user_id == user_id]["product_id"].values.tolist()
    for index,value in enumerate(product_ids):
        product_ids[index] = product_to_index[value]
    user_item_index[user_id] = product_ids

#2.创建共现矩阵
product_length = len(product_to_index)
matrix_c = np.zeros((product_length,product_length))
#循环用户-商品倒排索引 对于同一个用户购买的任意的两个商品 在共现矩阵中都要加1
for user_id in user_item_index:
    product_ids = user_item_index[user_id]
    for i,value in enumerate(product_ids):
        if(i < len(product_ids) - 1):
            list_other = product_ids[(i+1):len(product_ids)]
            for second_product_index in list_other:
                matrix_c[value][second_product_index] += 1
                matrix_c[second_product_index][value] += 1

#3.根据算法得到商品的相似矩阵 算法:cij/sqrt(|N(i)|*|N(j)|)
product_index_count_dic = {}
product_group = data.groupby("product_id").size()
for product_id in product_group.keys():
    product_index_count_dic[product_to_index[product_id]] = product_group[product_id]
matrix_w = np.zeros((product_length,product_length))

index_i_list,index_j_list = np.where(matrix_c > 0)
for index,value in enumerate(index_i_list):
    i = value
    j = index_j_list[index]
    score = matrix_c[i][j]/math.sqrt(product_index_count_dic[i] * product_index_count_dic[j])
    matrix_w[i][j] = score
    matrix_w[j][i] = score

#归一化
def normalize(value):
    value = (value - np.min(value))/(np.max(value) - np.min(value))
    return value

#4.创建用户的喜好商品矩阵
user_like_item_dic = {}
for user_id in user_data.keys():
    user_like_item = data[data.user_id == user_id]
    user_item_like_matrix = np.zeros(product_length)
    for i in range(len(user_like_item)):
        index = product_to_index[user_like_item.iloc[i].product_id]
        user_item_like_matrix[index] = user_like_item.iloc[i].orders_num
    user_like_item_dic[user_id] = normalize(user_item_like_matrix)

#获得最相似的k个商品
def getMostSimilar(matrix_w,index,k):
    c_list = matrix_w[index]
    similar_item = pd.DataFrame({"value":c_list})
    similar_item = similar_item.sort_values(by="value",ascending=False).iloc[0:k]
    similar_item_dic = {}
    for i in range(len(similar_item)):
        similar_item_dic[similar_item.iloc[i].name] = similar_item.iloc[i].value
    return similar_item_dic

def reommendItem(user_id,matrix_w,user_like_item_dic,k):
    recommend_dic = {}
    user_like_list = user_like_item_dic[user_id]
    user_like_item_index_list = np.where(user_like_list > 0)
    user_like_item_index_list = user_like_item_index_list[0]
    for product_index in user_like_item_index_list:
        like_score = user_like_list[product_index]
        most_similar_item = getMostSimilar(matrix_w,product_index,k)
        for key in most_similar_item.keys():
            if key in user_like_item_index_list:
                continue
            #最终得分是用户对商品的喜欢程度 * 商品的相似程度
            score = like_score * most_similar_item[key]
            if key in recommend_dic.keys():
                score += recommend_dic[key]
            recommend_dic[key] = score
    #返回得分最高的k个商品
    sorted_x = sorted(recommend_dic.items(), key=operator.itemgetter(1))
    sorted_x.reverse()
    return sorted_x[0:k]

#5.给用户推荐商品
def getAllUserRecommend():
    user_recommend = {}
    for user_id in user_like_item_dic.keys():
        #print(user_id)
        recommend_dic = reommendItem(user_id,matrix_w,user_like_item_dic,10)
        value = ""
        for key in recommend_dic:
            index = key[0]
            if value == "":
                value += str(index_to_product[index])
            else:
                value += "," + str(index_to_product[index])
        user_recommend[user_id] = value
    return user_recommend

res = getAllUserRecommend()
print(res)
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,816评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,729评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,300评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,780评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,890评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,084评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,151评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,912评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,355评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,666评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,809评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,504评论 4 334
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,150评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,882评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,121评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,628评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,724评论 2 351

推荐阅读更多精彩内容