Kafka高可用——replica分配方式

Kafka的Replica

概念

kafka的replica指的是消息的备份,为了保证kafka的高可用(当leader节点挂了之后,kafka依然能提供服务)kafka提供了备份的功能。这个备份是针对partition的。

可以通过 default.replication.factor 对replica的数目进行配置,默认值为1,表示不对topic进行备份。如果配置为2,表示除了leader节点,对于topic里的每一个partition,都会有一个额外的备份。

replica分配

为了起到备份的效果,简单设想下,如果让我们来分配replica,我们会怎么分配?
1)replica与所备份的节点不能再一台机器上,否则就起不到备份的效果
2)replica尽量均匀的分布在集群机器上,如果replica全部都在某几台机器上,那么一旦这台机器挂了,会丢失多个partition的备份

假设有3个broker、一个topic1、topic1有3个partition,default.replication.factor被设置为2,可能会这样分配


简单的replica分配示意图(圆角矩形代表replica)

这种分配保证了,任何一台机器挂掉,kafka集群依然有备份可用。

replica分配算法

假设有5个broker,10个partitions,备份数设置为3

1、从一个集群的随机节点开始,轮询放置第一个replica

broker-0 broker-1 broker-2 broker-3 broker-4 replica
p0 p1 p2 p3 p4 1st replica
p5 p6 p7 p8 p9 1st replica

2、后面的replica增加一个偏移量,继续放置,比如这里的p0,从broker-0开始,下一个replica就从broker-1开始

broker-0 broker-1 broker-2 broker-3 broker-4 replica
p0(start) p1 p2 p3 p4 1st replica
p5(start) p6 p7 p8 p9 1st replica
p4 p0 (start) p1 p2 p3 2nd replica
p8 p9 p5(start) p6 p7 2nd replica
p3 p4 p0(start) p1 p2 3rd replica
p7 p8 p9 p5(start) p6 3rd replica

通过这种方式,replica尽可能的被均匀分配在多个broker上

多机房

上述方法,可以保证多个broker存在时,哪怕其中一个broker挂了,kafka依旧能提供服务。但是,当有多个机房时候,这种分配方式,不能保证,跨机房的高可用。

示例:4个broker,4个partition,每个partition有1个备份

备份(不考虑机房)

按照之前的算法,replica会按照上图所示设置备份。这样假设机房1因为某个原因挂掉了,partition0的数据就会丢失掉。同理,机房2挂了,partition2也会丢失掉。

replica分配算法考虑机房

kafka可以配置一个参数broker.rack说明当前broker在哪个机房。

如上图,配置
broker0 -> rack1
broker1 -> rack1
broker2 -> rack2
broker3 -> rack2

当进行replica排序时候,不会仅仅按照broker顺序进行排序,而是会保证机房错开。比如这种情况的排序可能是
broker0,broker2,broker1,broker3

这样子排序之后,再次按照上述replica分配算法分配。


replica分配(考虑不同机房)

这种分配方式,保证了不同机房之间拥有全部的topic,一个机房的数据挂掉,仍然有另一个机房的数据可以使用。(前提条件,replica数目大于或等于机房的数目)

总结

kafka通过replica分配的算法保证了当某台机器挂掉,甚至某个机房挂掉,依然有备份可用。这种分配备份的算法,可以套用在需要有备份的场景,比如hdfs(没研究过,不知道是不是一样的)。

参考资料

https://community.hortonworks.com/questions/71458/can-anyone-explain-kafka-rack-awareness-feature.html
kafka源码 kafka.admin.AdminUtils#assignReplicasToBrokers

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,133评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,682评论 3 390
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,784评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,508评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,603评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,607评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,604评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,359评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,805评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,121评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,280评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,959评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,588评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,206评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,193评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,144评论 2 352

推荐阅读更多精彩内容