5.Linear space

Review
This chapter is the core of advanced algebra,and it's also the most difficult one for most students,the most efficiency way to learn this chapter is understand the concept without ambiguous,have more practice,and review it regularly.

A special linear transformation

A=(a_{ij})is a n-order square on the fileds of\mathbb{P},we define a linear transformation\mathscr{A}onP^{n\times n},satisfied\mathscr{A}X=AX,please analyze the properties of\mathscr{A}

Minimum polynominal

Theorem if Ais a quasi-diagonal matrix,markedA=diag\{A_1,A_2,\ldots,A_s\}whichA_ihas a minimum polynominalm_i(x)(i=1,2,\ldots,s),then the minimum polynominal of Ais the least common multiple ofm_1(x),m_2(x),\ldots,m_s(x),marked[m_1(x),m_2(x),\ldots,m_s(x)]

Example 1.if a matrix can be turned into a diagonal matrix,then it's minimum polynominal is the product of the one-time factor of mutual element.

Example 2.A real symmetry matrixAhas a characteristcs polynominal,markedf(\lambda)=\lambda^5+3\lambda^4-6\lambda^3-10\lambda^2+21\lambda-9,calculate the minimum polynominal ofA

Invariant sub-spaces

Some simple but important theorem

proposition 1:Linear transformations\mathscr{A}on theV,and it's kernel,range and chracteristcs sub-spaces are \mathscr{A}-sub-spaces

proposition 2:\mathscr{A,B}are two linear transformations,satisfied\mathscr{AB=BA},then all of the characteristcs sub-spaces of \mathscr{A}are the invariant sub-spaces of\mathscr{B}

proposition 3:Ais a linear transformations on fileds\mathbb{P}of linear spaceV,\alpha\in Wis a non-zero vector,thenL(\alpha)is a\mathscr{A}-sub-spaces if and only if \alphais a chracteristics vector of\mathscr{A}.

Theorem.Ais a transformations on fileds\mathbb{P}of n-dimension linear spaceV,then \mathscr{A} 'matrix under a set of bases is a diagonal matrix diag\{A_1,A_2,\ldots,A_s\}if and only ifVcan be decompositioned into the strict and of several non-trivial invariant subspace:V=W_1\oplus W_2\oplus \ldots \oplus W_s,and A_iis the matrix under the base of\mathscr{A}|W_i

Important example
suppose Vis a n-dimension linear space of complex field,and the linear transformations\mathscr{A}under the bases of \varepsilon_1,\varepsilon_2,\ldots,\varepsilon_n's matrix is a jordan block,markedJ=\left(\begin{array}{cccc} a&&&\\ 1&\ldots&&\\ &\ldots&a&\\ &&1&a\end{array} \right)
proof:(1)there is onlyVcan be the \mathscr{A}-sub-spaces who includes\varepsilon_1.
(2)all of the non-zero \mathscr{A}-sub-spaces includes\varepsilon_n
(3)Vcan't be decompositioned into two non-trivial \mathscr{A}-sub-spaces' strict and.
(4)Vhave and only haven+1 \mathscr{A}-sub-spaces,they are \{0\},\{L(\varepsilon_n)\},\{L(\varepsilon_{n-1},\varepsilon_n)\},\ldots,\{L(\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_n)\}

Tips: let \beta_1,\beta_2,\ldots,\beta_sis a group bases of W
suppose\beta_i=a_{it}\varepsilon_t+\ldots+a_{1n}\varepsilon_nand,existsa_{it}such thata_{it}\not=0then,we can times\mathscr{A} for several times.


The most important watershed(NB)

Lemma 1:if V=V_1\oplus V_2,V_1=V_{11}\oplus \ldots\oplus V_{1s},V_2=V_{21}\oplus \ldots \oplus V_{2t}thenV=V_{11}\oplus \ldots\oplus V_{1s} \oplus V_{21} \oplus \ldots \oplus V_{2t}
Lemma 2:Vus a linear space in filed\mathbb{P},\mathscr{\sigma}is a zero-transformation on V,then Ker \sigma=V
Lemma 3:if a finite dimension linear spaceVsatisfiedV=V_1\oplus V_2\oplus \ldots \oplus V_s=W_1\oplus W_2\oplus\ldots\oplus W_s,and V_i\subseteq W_i(i=1,2,\ldots,s)thenV_i=W_i(i=1,2,\ldots,s)


Proposition 1
(Extremely important)Vis a linear space on field\mathbb{P},\mathscr{A}is a linear transformations on spaceV,f(x),f_1(x),f_2(x),\ldots,f_s(x)\in \mathbb{P}[x],f(x)=f_1(x)f_2(x)\ldots f_s(x)andf_1(x),f_2(x),\ldots,f_s(x),any of two are mutal vegetarian.thenKerf(\mathscr{A})=Kerf_1(\mathscr{A})\oplus \ldots\oplus Kerf_s(\mathscr{A})

Proposition 2
Vis a linear space on field \mathbb{P},\mathscr{A}is a transformations on spaceV,f(x)\in \mathbb{P}[x]is a zero-polunominal.(then f(\mathscr{A})=\mathscr{0}),andf(x)=f_1(x)f_2(x)\ldots f_s(x),whichf_1(x),f_2(x),\ldots,f_s(x)\in \mathbb{P}and any of two are mutal vegetarian,thenV=Kerf_1(\mathscr{A})\oplus Kerf_2(\mathscr{A})\oplus\ldots \oplus Kerf_s(\mathscr{A})

Proposition 3
Vis a linear space in\mathbb{C},\mathscr{A}is a linear transformation onV,m(\lambda)is the minimum polynominal of\mathscr{A},andm(\lambda)=(\lambda-\lambda_1)^{t_1}(\lambda-\lambda_2)^{t_2}\ldots (\lambda-\lambda_s)^{t_s}which\lambda_1,\lambda_2,\ldots,\lambda_sare multal differentiation characteristc values.then,anyk_i \geq t_i(i=1,2,\ldots,s)we haveKer(\mathscr{A}-\lambda_1\epsilon)^{t_i}=Ker(\mathscr{A}-\lambda_i\epsilon)^{k_i}

Proposition 4
Vis a linear space on the field \mathbb{P},\mathscr{A}is a transformation onV,andf(x),f_1(x),\ldots,f_s(x)\in \mathbb{P}[x],f(x)=f_1(x)f_2(x)\ldots f_s(x)is a zero-polynominal of \mathscr{A},andf_1(x),f_2(x),\ldots,f_s(x)any of two are mutal vegetarian.we markedF_i(x)=\frac{f(x)}{f_i(x)}(i=1,2,\ldots,s)then for any i=1,2,\ldots,s,we haveKerf_i(\mathscr{A})=ImF_i(\mathscr{A})

Example 1:
f(x),g(x)are two non-zero polynominal on field\mathbb{P},d(x),r(x)are respectively the max common divisor and the min male-double,both of their first item are 1,Ais a n-order square matrix on field\mathbb{P},we marked f(A)X=0,g(A)X=0,d(A)X=0,r(A)X=0solving spaces respectively areV_1,V_2,V_3,V_4,proof:V_3=V_1\cap V_2,V_4=V_1+V_2

Example 2:if Vis a finite dimension linear space,\mathscr{A},\mathscr{B}are the linear transformations onV,satisfied\mathscr{A}^2=\mathscr{B}^2=0,\mathscr{AB+BA=\varepsilon}
(1)proof:Ker\mathscr{A}=\mathscr{A}Ker\mathscr{B},Ker\mathscr{B}=\mathscr{B}Ker\mathscr{A}andV=Ker\mathscr{A}\oplus Ker\mathscr{B}
(2)proof:the dimension ofVis even
(3)proof:ifdimV=2,thenVhas a group of bases such that\mathscr{A,B}matrix respectively are\left( \begin{array}{cc} 0&1\\ 0&0 \end{array} \right),\left( \begin{array}{cc} 0&0\\ 1&0 \end{array} \right)under this group of bases.

Tips: (2)suppose \alpha_1,\alpha_2,\ldots,\alpha_sare the bases ofKer\mathscr{A},and\beta_1,\beta_2,\ldots,\beta_tare the bases of Ker\mathscr{B},from(1),we know that eixist a group of vectors\gamma_1,\gamma_2,\ldots,\gamma_s\in Ker\mathscr{B}such that\alpha_i=\mathscr{A}\gamma_i(i=1,2,\ldots,s),this meanss\geq tand,we can do it in a similar way,and we can gets=t,or we can proof that \gamma_iare linear independent.
(3)there is only one vector in each space.

Example 3:\mathscr{A,B}are the linear transformations on linear spaceV,satisfiedA^2=A,B^2=B
proof:(1)\mathscr{A,B}have a same value range if and only if\mathscr{AB=B,BA=A}
(2)A,Bhave the same kernel if and only if\mathscr{AB=A,BA=B}

Tips: \mathscr{AB=B}\Leftarrow\Rightarrow\mathscr{(A-\varepsilon)B=0}\Leftarrow\Rightarrow\forall\alpha\in V,\mathscr{B\alpha}\in Ker\mathscr{(A-\varepsilon)=A}V,then ,\mathscr{B}V \subseteq \mathscr{A}V

Example 4:if \mathscr{A,B}are the linear transformations on linear spaceVof field \mathbb{P},and\mathscr{A}satisfied \mathscr{A^2=A},proof:
(1)\mathscr{A^{-1}(0)=\{\alpha-A\alpha|\alpha \in }V\}
(2)V=\mathscr{A^{-1}(0)\oplus A}V
(3)\mathscr{A^{-1}(0),A}Vare the\mathscr{B}-sub-space if and only if\mathscr{AB=BA}

Tips: we need\forall \alpha\in V,\mathscr{AB}\alpha=\mathscr{BA}\alpha,we decompositioned \alpha=\alpha_1+\alpha_2,and then we consider about\mathscr{BA}\alpha=\mathscr{BA}\alpha_2=\mathscr{BA^{2}}\beta_2=\mathscr{BA}\beta_2=\mathscr{B}\alpha_2and \mathscr{AB}\alpha=\mathscr{AB}\alpha_1+\mathscr{AB}\alpha_2=\mathscr{A^2}\beta_2=\mathscr{A}\beta_2=\mathscr{B}\alpha_2

Proposition
Extrmely important:if Vis a n-dimension linear space on field\mathbb{P},\mathscr{A}is a linear transformations onV,then the \mathscr{A} can be diagonalized if and only if the minimum polynominal of\mathscr{A}is a product of one-time-dependent on field\mathbb{P}.

Example 5:if Vis a 6-dimension linear space on complex field,\mathscr{A}is a transformations onV,the characteristic polynominal isf(\lambda)=(\lambda-1)(\lambda-2)^2(\lambda-3)^3,then Vcan be decomposition into the strict and of 3\mathscr{A}-sub-space,and their dimension respectively are1,2,3.

Tips: use the knowledge of jordan type.

Example 6:ifVis a n-dimension linear space on filed\mathbb{P},\mathscr{A}is a transformation onV,and m(\lambda)is the minimum polynominal of \mathscr{A},we know thatm(\lambda)=g(\lambda)h(\lambda),which(g(\lambda),h(\lambda))=1,proof:exists\mathscr{A}-sub-spaceV_1,V_2,such thatV=V_1\oplus V_2,and\mathscr{A}|V_1has minimum polynominalg(\lambda),\mathscr{A}|V_2has a minimum polynominalh(\lambda)

Tips: \mathscr{A}(\alpha_1,\alpha_2,\ldots,\alpha_r,\alpha_{r+1},\ldots,\alpha_n)=(\alpha_1,\ldots,\alpha_n)\left(\begin{array}{cc} A_1&\\ &A_2\end{array}\right)and,we marked the minimum polynominal ofA_1,A_2respectively as m_1(\lambda),m_2(\lambda),thenm_1(\lambda)|g(\lambda),m_2(\lambda)|h(\lambda),and we know that the minimum polynominal of Ais m(\lambda)=g(\lambda)h(\lambda)=[m_1(\lambda),m_2(\lambda)]\Rightarrow m_1(\lambda)=g(\lambda),m_2(\lambda)=h(\lambda)

The further discussing about whether a matrix can be diagonal.

Theorem.ifVis a n-dimension linear space on field\mathbb{P},\mathscr{A}is a transformation onV,\lambda_1,\lambda_2,\ldots,\lambda_s\in \mathbb{P}are all mutal different characteristic values,then these conditions are equal:
(1)\mathscr{A}can be diagonal.
(2)\mathscr{A}have nlinear independent characteristic vectors,they build a group of bases ofV.
(3)V=V_{\lambda_1}\oplus V_{\lambda_2}\oplus \ldots\oplus V_{\lambda_s}
(4)\mathscr{A} dimension of the summary of different characteristic values' space aren,other wordsdimV_1+\ldots+dimV_s=n
(5)The algebra repeat times of each characteristic equals the geometric repeat times.
(6)\mathscr{A}has a minimum polynominalm(\lambda)is the product of multal vegetarian one-times factors on field \mathbb{P},other wordsm(\lambda)=(\lambda-\lambda_1)\ldots(\lambda-\lambda_s)
(6)'\mathscr{A}exists a zero-polynominal which can be decompositioned into the product ofmultal vegetarian one-times factor.

Example 7.ifVis an-dimension linear space on complex field,\mathscr{A}is a linear transformation onV,satisfied\mathscr{A^4=4A^3+2A},then \mathscr{A}can be diagonal.

Example 8.if\mathscr{A}is a linear transformation on field\mathbb{P} of n-dimension linear space,it has a group of bases\alpha_1,\ldots,\alpha_n,and it's matrix under this base isA=\left(\begin{array}{ccc} &&1\\ &\ldots&\\ 1&&\end{array}\right),whether \mathscr{A}can be diagonal?if it can,please calculate a group of bases of V,such that\mathscr{A}become a diagonal matrix under this group of base,and write down this diagonal matrix.



Exchangeble problems and simultaneous upper triangular problem.

Example 1.Vis a n-dimension linear space on the complex field,\mathscr{A,B}are linear transformations on V,satisfied\mathscr{AB=BA},then \mathscr{A,B}have common characteristic vectors.
Tips: \mathscr{A,B} \Rightarrow all the characteristic sub-space of\mathscr{A} are \mathscr{B}-sub-space.
we letV_{\lambda}as the characteristic space of \mathscr{A} \Rightarrow V_{\lambda}is \mathscr{B}-sub-space\Rightarrow \mathscr{B}_{|V_{\lambda}}is a linear transformation on V_{\lambda} \Rightarrow \mathscr{B}_{|V_{\lambda}}has a characteristic space V_u \subseteq V_{\lambda},then for all the \alpha\in V_u,\alpha\not=0\Rightarrow \left\{ \begin{array}{c} \mathscr{B}\alpha=\mu\alpha\\ \mathscr{A}\beta=\lambda\beta \end{array}\right.

Example 2.Vis a n-dimension linear space on complex field,\mathscr{A,B}are linear transformations onV,satisfied\mathscr{AB=BA},if \mathscr{A}has s different characteristic values,then \mathscr{A,B}at least have s common and linear independent characteristic vectors.

Proposition
if A,Bare two n-order matrix on complex field,andAB=BA,then exists a reversible matrixP,such thatP^{-1}APand P^{-1}BPcan become the upper triangle at the same time.

Example 3.if A,Bare two n-order matrix on complex field,and Ais power zero matrix(exist a positive integer m,such that A^m=0),and AB=BA,then|A+B|=|B|

Example 4.ifA,Bare n-order square,AB=BA,andA,Bcan be diagonal,please proof A,Bcan be diagonal at the same time.
Tips: first,we suppose existsPsuch thatP_1^{-1}AP_1=diag\{\lambda _1E_1,\lambda_2 E_2,\ldots,\lambda_sE_s\},and from P_1^{-1}ABP_1=P_1{-1}BAP_1we knowP_1^{-1}BP_1=diag\{B_1,B_2,\ldots,B_s\},andBcan be diagonal too,so exists aP_2such thatP_2^{-1}P_1^{-1}BP_1P_2=\{\mu_1,\mu_2,\ldots,\mu_n\},and thePwe are looking for isP_1P_2

Example 5.A,Bare the n-order real symmetry matrix,proof:exist orthogonal matrix Tsuch thatT'ATandT'BTare diagonal matrix at the same time if and only if AB=BA

Example 6.A,Bare n-order real symmetry matrix,then AB=BAif and only if they have common vectors as a standard orthogonal base on the European space\mathbb{R}^n.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 7,499评论 0 10
  • 花园里的花是开不完的! 像桃花,杏花,海棠花,梨花,紫荆花等都依次落了,叶子都闪亮亮的长大了。 像这卵圆形的杏叶,...
    紫色人生阅读 513评论 0 1
  • 在前程无忧上投了很多简历 ,鲜有回信,好不容易去了上海的一家事务所面试,但是由于专业问题回答不上来,没被录用,可能...
    遇见MissK阅读 280评论 0 0
  • 从大数据中找规律 对于查处毒品种植的案例,我们看到了大数据思维的三个亮点: 第一是用统计的规律和个案对比,做到精准...
    一匹蒙古马阅读 278评论 0 0