5.Linear space

Review
This chapter is the core of advanced algebra,and it's also the most difficult one for most students,the most efficiency way to learn this chapter is understand the concept without ambiguous,have more practice,and review it regularly.

A special linear transformation

A=(a_{ij})is a n-order square on the fileds of\mathbb{P},we define a linear transformation\mathscr{A}onP^{n\times n},satisfied\mathscr{A}X=AX,please analyze the properties of\mathscr{A}

Minimum polynominal

Theorem if Ais a quasi-diagonal matrix,markedA=diag\{A_1,A_2,\ldots,A_s\}whichA_ihas a minimum polynominalm_i(x)(i=1,2,\ldots,s),then the minimum polynominal of Ais the least common multiple ofm_1(x),m_2(x),\ldots,m_s(x),marked[m_1(x),m_2(x),\ldots,m_s(x)]

Example 1.if a matrix can be turned into a diagonal matrix,then it's minimum polynominal is the product of the one-time factor of mutual element.

Example 2.A real symmetry matrixAhas a characteristcs polynominal,markedf(\lambda)=\lambda^5+3\lambda^4-6\lambda^3-10\lambda^2+21\lambda-9,calculate the minimum polynominal ofA

Invariant sub-spaces

Some simple but important theorem

proposition 1:Linear transformations\mathscr{A}on theV,and it's kernel,range and chracteristcs sub-spaces are \mathscr{A}-sub-spaces

proposition 2:\mathscr{A,B}are two linear transformations,satisfied\mathscr{AB=BA},then all of the characteristcs sub-spaces of \mathscr{A}are the invariant sub-spaces of\mathscr{B}

proposition 3:Ais a linear transformations on fileds\mathbb{P}of linear spaceV,\alpha\in Wis a non-zero vector,thenL(\alpha)is a\mathscr{A}-sub-spaces if and only if \alphais a chracteristics vector of\mathscr{A}.

Theorem.Ais a transformations on fileds\mathbb{P}of n-dimension linear spaceV,then \mathscr{A} 'matrix under a set of bases is a diagonal matrix diag\{A_1,A_2,\ldots,A_s\}if and only ifVcan be decompositioned into the strict and of several non-trivial invariant subspace:V=W_1\oplus W_2\oplus \ldots \oplus W_s,and A_iis the matrix under the base of\mathscr{A}|W_i

Important example
suppose Vis a n-dimension linear space of complex field,and the linear transformations\mathscr{A}under the bases of \varepsilon_1,\varepsilon_2,\ldots,\varepsilon_n's matrix is a jordan block,markedJ=\left(\begin{array}{cccc} a&&&\\ 1&\ldots&&\\ &\ldots&a&\\ &&1&a\end{array} \right)
proof:(1)there is onlyVcan be the \mathscr{A}-sub-spaces who includes\varepsilon_1.
(2)all of the non-zero \mathscr{A}-sub-spaces includes\varepsilon_n
(3)Vcan't be decompositioned into two non-trivial \mathscr{A}-sub-spaces' strict and.
(4)Vhave and only haven+1 \mathscr{A}-sub-spaces,they are \{0\},\{L(\varepsilon_n)\},\{L(\varepsilon_{n-1},\varepsilon_n)\},\ldots,\{L(\varepsilon_1,\varepsilon_2,\ldots,\varepsilon_n)\}

Tips: let \beta_1,\beta_2,\ldots,\beta_sis a group bases of W
suppose\beta_i=a_{it}\varepsilon_t+\ldots+a_{1n}\varepsilon_nand,existsa_{it}such thata_{it}\not=0then,we can times\mathscr{A} for several times.


The most important watershed(NB)

Lemma 1:if V=V_1\oplus V_2,V_1=V_{11}\oplus \ldots\oplus V_{1s},V_2=V_{21}\oplus \ldots \oplus V_{2t}thenV=V_{11}\oplus \ldots\oplus V_{1s} \oplus V_{21} \oplus \ldots \oplus V_{2t}
Lemma 2:Vus a linear space in filed\mathbb{P},\mathscr{\sigma}is a zero-transformation on V,then Ker \sigma=V
Lemma 3:if a finite dimension linear spaceVsatisfiedV=V_1\oplus V_2\oplus \ldots \oplus V_s=W_1\oplus W_2\oplus\ldots\oplus W_s,and V_i\subseteq W_i(i=1,2,\ldots,s)thenV_i=W_i(i=1,2,\ldots,s)


Proposition 1
(Extremely important)Vis a linear space on field\mathbb{P},\mathscr{A}is a linear transformations on spaceV,f(x),f_1(x),f_2(x),\ldots,f_s(x)\in \mathbb{P}[x],f(x)=f_1(x)f_2(x)\ldots f_s(x)andf_1(x),f_2(x),\ldots,f_s(x),any of two are mutal vegetarian.thenKerf(\mathscr{A})=Kerf_1(\mathscr{A})\oplus \ldots\oplus Kerf_s(\mathscr{A})

Proposition 2
Vis a linear space on field \mathbb{P},\mathscr{A}is a transformations on spaceV,f(x)\in \mathbb{P}[x]is a zero-polunominal.(then f(\mathscr{A})=\mathscr{0}),andf(x)=f_1(x)f_2(x)\ldots f_s(x),whichf_1(x),f_2(x),\ldots,f_s(x)\in \mathbb{P}and any of two are mutal vegetarian,thenV=Kerf_1(\mathscr{A})\oplus Kerf_2(\mathscr{A})\oplus\ldots \oplus Kerf_s(\mathscr{A})

Proposition 3
Vis a linear space in\mathbb{C},\mathscr{A}is a linear transformation onV,m(\lambda)is the minimum polynominal of\mathscr{A},andm(\lambda)=(\lambda-\lambda_1)^{t_1}(\lambda-\lambda_2)^{t_2}\ldots (\lambda-\lambda_s)^{t_s}which\lambda_1,\lambda_2,\ldots,\lambda_sare multal differentiation characteristc values.then,anyk_i \geq t_i(i=1,2,\ldots,s)we haveKer(\mathscr{A}-\lambda_1\epsilon)^{t_i}=Ker(\mathscr{A}-\lambda_i\epsilon)^{k_i}

Proposition 4
Vis a linear space on the field \mathbb{P},\mathscr{A}is a transformation onV,andf(x),f_1(x),\ldots,f_s(x)\in \mathbb{P}[x],f(x)=f_1(x)f_2(x)\ldots f_s(x)is a zero-polynominal of \mathscr{A},andf_1(x),f_2(x),\ldots,f_s(x)any of two are mutal vegetarian.we markedF_i(x)=\frac{f(x)}{f_i(x)}(i=1,2,\ldots,s)then for any i=1,2,\ldots,s,we haveKerf_i(\mathscr{A})=ImF_i(\mathscr{A})

Example 1:
f(x),g(x)are two non-zero polynominal on field\mathbb{P},d(x),r(x)are respectively the max common divisor and the min male-double,both of their first item are 1,Ais a n-order square matrix on field\mathbb{P},we marked f(A)X=0,g(A)X=0,d(A)X=0,r(A)X=0solving spaces respectively areV_1,V_2,V_3,V_4,proof:V_3=V_1\cap V_2,V_4=V_1+V_2

Example 2:if Vis a finite dimension linear space,\mathscr{A},\mathscr{B}are the linear transformations onV,satisfied\mathscr{A}^2=\mathscr{B}^2=0,\mathscr{AB+BA=\varepsilon}
(1)proof:Ker\mathscr{A}=\mathscr{A}Ker\mathscr{B},Ker\mathscr{B}=\mathscr{B}Ker\mathscr{A}andV=Ker\mathscr{A}\oplus Ker\mathscr{B}
(2)proof:the dimension ofVis even
(3)proof:ifdimV=2,thenVhas a group of bases such that\mathscr{A,B}matrix respectively are\left( \begin{array}{cc} 0&1\\ 0&0 \end{array} \right),\left( \begin{array}{cc} 0&0\\ 1&0 \end{array} \right)under this group of bases.

Tips: (2)suppose \alpha_1,\alpha_2,\ldots,\alpha_sare the bases ofKer\mathscr{A},and\beta_1,\beta_2,\ldots,\beta_tare the bases of Ker\mathscr{B},from(1),we know that eixist a group of vectors\gamma_1,\gamma_2,\ldots,\gamma_s\in Ker\mathscr{B}such that\alpha_i=\mathscr{A}\gamma_i(i=1,2,\ldots,s),this meanss\geq tand,we can do it in a similar way,and we can gets=t,or we can proof that \gamma_iare linear independent.
(3)there is only one vector in each space.

Example 3:\mathscr{A,B}are the linear transformations on linear spaceV,satisfiedA^2=A,B^2=B
proof:(1)\mathscr{A,B}have a same value range if and only if\mathscr{AB=B,BA=A}
(2)A,Bhave the same kernel if and only if\mathscr{AB=A,BA=B}

Tips: \mathscr{AB=B}\Leftarrow\Rightarrow\mathscr{(A-\varepsilon)B=0}\Leftarrow\Rightarrow\forall\alpha\in V,\mathscr{B\alpha}\in Ker\mathscr{(A-\varepsilon)=A}V,then ,\mathscr{B}V \subseteq \mathscr{A}V

Example 4:if \mathscr{A,B}are the linear transformations on linear spaceVof field \mathbb{P},and\mathscr{A}satisfied \mathscr{A^2=A},proof:
(1)\mathscr{A^{-1}(0)=\{\alpha-A\alpha|\alpha \in }V\}
(2)V=\mathscr{A^{-1}(0)\oplus A}V
(3)\mathscr{A^{-1}(0),A}Vare the\mathscr{B}-sub-space if and only if\mathscr{AB=BA}

Tips: we need\forall \alpha\in V,\mathscr{AB}\alpha=\mathscr{BA}\alpha,we decompositioned \alpha=\alpha_1+\alpha_2,and then we consider about\mathscr{BA}\alpha=\mathscr{BA}\alpha_2=\mathscr{BA^{2}}\beta_2=\mathscr{BA}\beta_2=\mathscr{B}\alpha_2and \mathscr{AB}\alpha=\mathscr{AB}\alpha_1+\mathscr{AB}\alpha_2=\mathscr{A^2}\beta_2=\mathscr{A}\beta_2=\mathscr{B}\alpha_2

Proposition
Extrmely important:if Vis a n-dimension linear space on field\mathbb{P},\mathscr{A}is a linear transformations onV,then the \mathscr{A} can be diagonalized if and only if the minimum polynominal of\mathscr{A}is a product of one-time-dependent on field\mathbb{P}.

Example 5:if Vis a 6-dimension linear space on complex field,\mathscr{A}is a transformations onV,the characteristic polynominal isf(\lambda)=(\lambda-1)(\lambda-2)^2(\lambda-3)^3,then Vcan be decomposition into the strict and of 3\mathscr{A}-sub-space,and their dimension respectively are1,2,3.

Tips: use the knowledge of jordan type.

Example 6:ifVis a n-dimension linear space on filed\mathbb{P},\mathscr{A}is a transformation onV,and m(\lambda)is the minimum polynominal of \mathscr{A},we know thatm(\lambda)=g(\lambda)h(\lambda),which(g(\lambda),h(\lambda))=1,proof:exists\mathscr{A}-sub-spaceV_1,V_2,such thatV=V_1\oplus V_2,and\mathscr{A}|V_1has minimum polynominalg(\lambda),\mathscr{A}|V_2has a minimum polynominalh(\lambda)

Tips: \mathscr{A}(\alpha_1,\alpha_2,\ldots,\alpha_r,\alpha_{r+1},\ldots,\alpha_n)=(\alpha_1,\ldots,\alpha_n)\left(\begin{array}{cc} A_1&\\ &A_2\end{array}\right)and,we marked the minimum polynominal ofA_1,A_2respectively as m_1(\lambda),m_2(\lambda),thenm_1(\lambda)|g(\lambda),m_2(\lambda)|h(\lambda),and we know that the minimum polynominal of Ais m(\lambda)=g(\lambda)h(\lambda)=[m_1(\lambda),m_2(\lambda)]\Rightarrow m_1(\lambda)=g(\lambda),m_2(\lambda)=h(\lambda)

The further discussing about whether a matrix can be diagonal.

Theorem.ifVis a n-dimension linear space on field\mathbb{P},\mathscr{A}is a transformation onV,\lambda_1,\lambda_2,\ldots,\lambda_s\in \mathbb{P}are all mutal different characteristic values,then these conditions are equal:
(1)\mathscr{A}can be diagonal.
(2)\mathscr{A}have nlinear independent characteristic vectors,they build a group of bases ofV.
(3)V=V_{\lambda_1}\oplus V_{\lambda_2}\oplus \ldots\oplus V_{\lambda_s}
(4)\mathscr{A} dimension of the summary of different characteristic values' space aren,other wordsdimV_1+\ldots+dimV_s=n
(5)The algebra repeat times of each characteristic equals the geometric repeat times.
(6)\mathscr{A}has a minimum polynominalm(\lambda)is the product of multal vegetarian one-times factors on field \mathbb{P},other wordsm(\lambda)=(\lambda-\lambda_1)\ldots(\lambda-\lambda_s)
(6)'\mathscr{A}exists a zero-polynominal which can be decompositioned into the product ofmultal vegetarian one-times factor.

Example 7.ifVis an-dimension linear space on complex field,\mathscr{A}is a linear transformation onV,satisfied\mathscr{A^4=4A^3+2A},then \mathscr{A}can be diagonal.

Example 8.if\mathscr{A}is a linear transformation on field\mathbb{P} of n-dimension linear space,it has a group of bases\alpha_1,\ldots,\alpha_n,and it's matrix under this base isA=\left(\begin{array}{ccc} &&1\\ &\ldots&\\ 1&&\end{array}\right),whether \mathscr{A}can be diagonal?if it can,please calculate a group of bases of V,such that\mathscr{A}become a diagonal matrix under this group of base,and write down this diagonal matrix.



Exchangeble problems and simultaneous upper triangular problem.

Example 1.Vis a n-dimension linear space on the complex field,\mathscr{A,B}are linear transformations on V,satisfied\mathscr{AB=BA},then \mathscr{A,B}have common characteristic vectors.
Tips: \mathscr{A,B} \Rightarrow all the characteristic sub-space of\mathscr{A} are \mathscr{B}-sub-space.
we letV_{\lambda}as the characteristic space of \mathscr{A} \Rightarrow V_{\lambda}is \mathscr{B}-sub-space\Rightarrow \mathscr{B}_{|V_{\lambda}}is a linear transformation on V_{\lambda} \Rightarrow \mathscr{B}_{|V_{\lambda}}has a characteristic space V_u \subseteq V_{\lambda},then for all the \alpha\in V_u,\alpha\not=0\Rightarrow \left\{ \begin{array}{c} \mathscr{B}\alpha=\mu\alpha\\ \mathscr{A}\beta=\lambda\beta \end{array}\right.

Example 2.Vis a n-dimension linear space on complex field,\mathscr{A,B}are linear transformations onV,satisfied\mathscr{AB=BA},if \mathscr{A}has s different characteristic values,then \mathscr{A,B}at least have s common and linear independent characteristic vectors.

Proposition
if A,Bare two n-order matrix on complex field,andAB=BA,then exists a reversible matrixP,such thatP^{-1}APand P^{-1}BPcan become the upper triangle at the same time.

Example 3.if A,Bare two n-order matrix on complex field,and Ais power zero matrix(exist a positive integer m,such that A^m=0),and AB=BA,then|A+B|=|B|

Example 4.ifA,Bare n-order square,AB=BA,andA,Bcan be diagonal,please proof A,Bcan be diagonal at the same time.
Tips: first,we suppose existsPsuch thatP_1^{-1}AP_1=diag\{\lambda _1E_1,\lambda_2 E_2,\ldots,\lambda_sE_s\},and from P_1^{-1}ABP_1=P_1{-1}BAP_1we knowP_1^{-1}BP_1=diag\{B_1,B_2,\ldots,B_s\},andBcan be diagonal too,so exists aP_2such thatP_2^{-1}P_1^{-1}BP_1P_2=\{\mu_1,\mu_2,\ldots,\mu_n\},and thePwe are looking for isP_1P_2

Example 5.A,Bare the n-order real symmetry matrix,proof:exist orthogonal matrix Tsuch thatT'ATandT'BTare diagonal matrix at the same time if and only if AB=BA

Example 6.A,Bare n-order real symmetry matrix,then AB=BAif and only if they have common vectors as a standard orthogonal base on the European space\mathbb{R}^n.

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,864评论 6 494
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,175评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,401评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,170评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,276评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,364评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,401评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,179评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,604评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,902评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,070评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,751评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,380评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,077评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,312评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,924评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,957评论 2 351

推荐阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 7,319评论 0 10
  • 花园里的花是开不完的! 像桃花,杏花,海棠花,梨花,紫荆花等都依次落了,叶子都闪亮亮的长大了。 像这卵圆形的杏叶,...
    紫色人生阅读 489评论 0 1
  • 在前程无忧上投了很多简历 ,鲜有回信,好不容易去了上海的一家事务所面试,但是由于专业问题回答不上来,没被录用,可能...
    遇见MissK阅读 179评论 0 0
  • 从大数据中找规律 对于查处毒品种植的案例,我们看到了大数据思维的三个亮点: 第一是用统计的规律和个案对比,做到精准...
    一匹蒙古马阅读 262评论 0 0